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1.1 Introduction

Superconductivity in organic materials has emerged in 1979 from an impor-
tant background of preexisting knowledge and experimental techniques. All
previous studies undertaken since 1973, which had been mostly performed on
the (TTF− TCNQ) series of charge transfer organic conductors had failed to
reveal superconductivity using chemistry and (or) pressure to suppress the
density-wave or the so-called Peierls instability inherent to one-dimensional
conductors. A breakthrough, which contributed to the discovery of organic
superconductivity, has been the synthesis of the molecule TMTSF by K.
Bechgaard and coworkers [1].

Actually, in the early 70’s leading ideas governing the search for new
materials likely to exhibit good metallicity and possibly superconductivity
were driven by the possibility to minimize the role of electron-electron re-
pulsions and at the same time to increase the electron-phonon interaction,
while keeping the overlap between conducting stacks as large as possible.
This led to the synthesis of the new electron donating molecule TMTSF, pre-
senting much analogy with the previously known fulvalene donors in which
the redox potential (∆E)1/2 can be minimized [2, 3], by utilizing selenium
instead of sulfur as hetero-atoms [4]. The next step was quite encouraging
since the use of a high pressure has allowed to remove the instability due
to the divergence of the Peierls channel down to the lowest temperatures
in the two-chain conductor TMTSF−DMTCNQ [5]. A lucky situation has
also been the synthesis of a series of 1D organic salts based on the radical
cationic molecule TMTTF (the sulfur analog of the TMTSF molecule) and
on a variety of inorganic monoanions such as ClO4, BF4 or SCN [6,7]. A con-
ducting character could thus be anticipated from the intermolecular overlap
of partly filled highest molecular orbitals (HOMO) of individual molecules.
The compounds, (TMTTF)2X, were all insulating at ambient pressure but
their crystal structure is the prototype of the (TMTSF)2X series in which
superconductivity has been subsequently discovered. In the rest of this ar-
ticle when we mention a (TM)2X compound, this means that the organic
molecule can be either TMTSF or TMTTF. The structure exhibits a face to
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Fig. 1.1. (TM)2X, view of the cationic and anionic stacking perpendicular to the
stacking axis, courtesy of J. Ch. Ricquier, IMN, Nantes

face packing of flat molecular units along the a direction and the formation of
molecular layers in the a−b planes separated by anions stacks (Fig. 1.1). The
overall symmetry is triclinic, not too far from orthorhombic often taken as
the approximate structure by theoreticians. In addition, the structure reveals
an important peculiarity namely, the anions are located in centrosymmetrical
cavities lie slightly above or below each molecular plane with a zigzag stack-
ing of the molecules along the a direction. This structure leads in turn to a
weak alternation of the interplanar distance (dimerization and a concomitant
splitting of the HOMO conduction band into a filled lower sub-band sepa-
rated from a half-filled upper (hole-like) band by a gap ∆D at ±2kF , called
the dimerization gap in the new Brillouin zone. However, on account of the
finite transverse dispersion, this dimerization gap does not lead to a genuine
gap in the middle of the density of states as given from the extended-Hückel
band calculation. The only claim that can be made is that these conduc-
tors show commensurate band filling (three-quarter filled with electrons or
one quarter-empty with holes). This originates from the 2:1 stoichiometry.
Consequently, according to a non interacting particle band calculation, all
compounds in the (TMTTF)2X series should be found conducting.

Table 1.1. Calculated band parameters for three representative members of the
(TM)2X series according to the room temperature crystallographic data in Ref. [8].
The average intra and interstack interactions are given in lines 3 and 5, respectively.
The bond dimerization is shown in line 4. All energies are in meV

(TMTTF)2PF6 (TMTSF)2PF6 (TMTSF)2ClO4

t1 137 252 258
t2 93 209 221
t 115 230 239
∆t

t
0.38 0.187 0.155

t⊥b 13 58 44
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In Table (1.1) we report the band parameters of different members of the
(TMTSF)2X series as computed from crystallographic data [8]. The sulfur
compounds exhibit bands that are significantly narrower and their crystallo-
graphic structure is more dimerized than those of the selenide compounds.
(TMTTF)2Br (not listed in Table (1.1)) is, however, an exception among
the sulfur compounds with a dimerization of 0.13, which is smaller than the
value calculated for (TMTSF)2ClO4. This might be due to the calculation of
electronic bands based on rather old and less accurate crystallographic data
than those used for the other compounds [9]. All (TM)2X compounds with
diversified anions can be gathered on a generic phase diagram displaying a
wealth of different physical properties [10]. The gross features of the (TM)2X
phase diagram are shown in Figures 1.2 and 1.3. Compounds on the left
hand side of the phase diagram, such as (TMTTF)2PF6, are insulators below
room temperature with a broad metal to insulator transition, while those
on the right hand side of (TMTTF)2Br exhibit an extended temperature
regime with a metallic behavior and a sharp transition towards an insulating
ground state. Therefore, the cause of the insulating nature of some members
of the (TMTTF)2X series should be determined in relation to the role of
e-e repulsion and low dimensionality as we shall show later. Although the
most extensive pressure studies have been performed on (TMTSF)2PF6 and
(TMTTF)2PF6, recent studies of other compounds of the (TMTTF)2X se-
ries with X= ReO4, BF4 and Br have shown that the main features observed
under pressure in (TMTTF)2PF6 or in (TMTSF)2PF6 are also observed in
other systems [11]. At this stage we may emphasize that the band filling of
these materials is commensurate and in addition the existence of a dimeriza-
tion in the crystal structure of the (TM)2X series raises quite a challenging
problem for the physics of one dimensional conductors since with the ax-
ial dimerization the conduction band becomes half-filled while it is originally
quarter-filled from stoichiometry considerations. The commensurate band fill-
ing opens a new scattering channel for the carriers between both sides of the
Fermi surface as then the total momentum transfer for two (four) electrons
from one side of the 1-D Fermi surface to the other is equal to a reciprocal
lattice vector (Umklapp scattering for half (quarter)-filled bands).

1.2 Elements of theory for interacting electrons in low
dimension

In this section we shall depict some of the main results of the theory of quasi-
one-dimensional metals. Given the pronounced one-dimensional anisotropy of
the compounds, it is natural to first consider the 1D limit. To this end, the
study of susceptibilities of non interacting electrons is particularly revealing
of the natural instabilities that can take place in one dimension. Take for ex-
ample the bare Peierls susceptibility of the system, which is the response to
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Fig. 1.2. Phase diagram of (TMTTF)2PF6, as determined from transport mea-
surements. After Ref. [11, 12]

the formation of 2kF electron-hole pairs, the constituents of charge-density-
wave (CDW) and spin-density-wave (SDW) correlations (here kF being the
Fermi wave vector). In one dimension, the energies of an electron (hole) state
at k and a hole (electron ) state at k−2kF are connected through the nesting
relation ε(k) = −ε(k − 2kF ) of the electron spectrum ε(k) close to the Fermi
level. The summation over a macroscopic number of intermediate electron-
hole states linked by this relation leads to an infrared logarithmic singularity
of the form χ0

P (2kF , T ) ∼ (πvF )−1 ln(EF /T ). Similarly, the Cooper suscep-
tibility χ0

C , which probes the formation of pairs (two holes or two electrons)
of particles of total momentum zero that are connected through the inver-
sion property of the spectrum ε(k) = ε(−k), also gives rise to a logarithmic
divergence χ0

C(T ) ∼ (πvF )−1 ln(EF /T ) – a singularity that is actually found
in any dimension.

What thus really makes one dimension so peculiar resides in the fact that
both singularities refer to the same set of electronic states and will then
interfere one another [13]. In the presence of interactions, the interference
is found to all order of perturbation theory for the scattering amplitudes of
electrons with opposite Fermi velocities and it modifies the nature of the
electron system in a essential way. In the framework of the 1D electron gas
model, the selected emphasis put by these infrared singularities on electronic
states close to the Fermi level allows us to define interactions with respect
to the Fermi points ±kF [14,15]. Thus for a rotationally invariant system of
length L, the Hamiltonian of the electron gas model can be written in the
form
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H =
∑
k,p,σ

εp(k)a†p,k,σap,k,σ

+
1
L

∑
{k,q,σ}

g1 a
†
+,k1+2kF+q,σa

†
−,k2−2kF−q,σ′a+,k2,σ′a−,k1,σ

+
1
L

∑
{k,q,σ}

g2 a
†
+,k1+q,σ

a†−,k2−q,σ′a−,k2,σ′a+,k1,σ

+
1

2L

∑
{p,k,q,σ}

g3 a
†
p,k1+p2kF+q,σa

†
p,k2−p2kF−q+pG,σ′a−p,k2,σ′a−p,k1,σ

+
1
L

∑
{p,k,q,σ}

g4 a
†
p,k1+q,σ

a†p,k2−q,−σap,k2,−σa−p,k1,σ (1.1)

where εp(k) = vF (pk− kF ) is the electron spectrum energy for right (p = +)
and left (p = −) going electrons, g1 and g2 are the back and forward scattering
amplitudes, respectively, whereas g3 corresponds to the Umklapp scattering,
a process made possible at half-filling, where the reciprocal lattice vector
G = 4kF = 2π/a enters in the momentum conservation law; finally, one has
the coupling g4 by which two electrons near kF (resp. −kF ) experience a
small momentum transfer which keeps them on the same branch [15].

In the one-loop perturbation theory, the electron scattering amplitudes are
corrected by the aforementioned Cooper and Peierls logarithmic singularities.
These logarithms are scale invariant quantities as a function of energy or
temperature, which allow us to write down scaling or flow equations for the
various scattering amplitudes. After all cancellations due to Cooper-Peierls
interference being made, we have [14,15],

g̃′1 = −g̃2
1 + . . .

(2g̃′2 − g̃′1) = g̃2
3 + . . .

g̃′3 = g̃3(2g̃2 − g̃1) + . . . , (1.2)

where g̃′i = (d/d`)g̃i and ` = lnEF /T is the logarithmic – loop – vari-
able. The long wavelength spin excitations are governed by the g̃1 ≡ g1/πvσ
(vσ = vF (1− g4/2πvF ) coupling, which is decoupled from both g̃3 ≡ g3/πvρ
(vρ = vF (1 + g4/2πvF )) and the combination 2g̃2 − g̃1 ≡ (2g2 − g1)/πvρ
connected to charge excitations. In the physically relevant repulsive sec-
tor for systems like (TM)2X where g1,2 > 0, and owing to the existence
of a small dimerization gap ∆D � EF of organic stacks (Table 1.1), weak
half-filled Umklapp scattering g3 ≈ g1∆D/EF is present [16, 17]. Thus for
g1 − 2g2 <| g3 |, both 2g2 − g1 and g3 are relevant variables for the charge
and scale to the strong coupling sector, where a charge gap ∆ρ is found be-
low the temperature scale Tρ(∼ ∆ρ/2). This can be seen as a 4kF charge
localization responsible for a Mott insulating (MI) state. On the other hand,
the solution g̃1(T ) = g̃1/(1 + g̃1 lnEF /T ) for the g1 coupling, which follows
from Eq. (1.2), is marginally irrelevant and scales to zero, leaving the spins
degrees of freedom gapless as shown by the calculation of the uniform spin
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susceptibility [14,18],

χσ(T ) =
2µ2

B(πvσ)−1

1− 1
2 g̃1(T )

. (1.3)

The spin susceptibility decreases monotonically as a function of temperature
and is unaffected by the occurrence of a charge gap. The electron system de-
velops singularities, however, for staggered density-wave response. Thus the
2kF SDW or antiferromagnetic response, which is governed by the combina-
tion of couplings g̃2(`)+ g̃3(`) that flows to strong coupling, develops a power
law singularity of the form

χAF(2kF , T ) ∝ (πvF )−1(T/∆ρ)−γ , (1.4)

where the power law exponent γ = g̃2(Tρ) + g̃3(Tρ) ∼ 1. The response for
the 2kF charge-density-wave ‘on bonds’, called the bond-order-wave (BOW)
response, which is governed by the combination of couplings g̃2(`) + g̃3(`)−
2g̃1(`), also develops a power law singularity in temperature

χBOW(2kF , T ) ∝ (πvF )−1(T/∆ρ)−γBOW . (1.5)

Here the exponent γBOW ∼ 1 is essentially the same as the one of AF response
– the amplitude of the latter being larger, however [19]. When 2kF phonons
are included, their coupling to singular BOW correlations yields a lattice
instability of the spin-Peierls (SP) type. It is worthwhile to note that all the
above properties of the 1D electron gas model find some echo in the phase
diagram of (TM)2X (Fig. 1.3).

1.2.1 Some results of the bosonization picture [20]

We now turn to the description of the one-dimensional electron gas using
the bosonization method. A major property of interacting electrons in one
dimension is that long wavelength charge or spin-density-wave oscillations
constructed by the combination of electron-hole pair excitations at low en-
ergy form extremely stable excitations [20, 21]. Quasi-particles excitations
like those taking place in a Fermi liquid (FL) for example, are absent at low
energy and are replaced by these collective acoustic excitations for both spin
(σ) and charge (ρ) degrees and freedom, thus allowing the construction of a
phase representation of the electron gas Hamiltonian. The Fermi field

ψp,σ(x) = L−
1
2

∑
k

ap,k,σ e
ikx

∼ lim
α0→0

eipkF x√
2πα0

exp
(
− i√

2
[p(φρ + σφσ) + (θρ + σθσ)]

)
, (1.6)

can be expressed in terms of the spin and charge phase fields φν=ρ,σ [20, 22]
(α0 is a short distance cut-off). These satisfy the commutation relations
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[Πν′(x′), φν(x)] = −iδνν′δ(x− x′), (1.7)

where Πν(x) is the momentum conjugate to φν(x) and is defined by θν(x) =
π
∫
Πν(x′)dx′. In this phase variable representation the full electron gas

Hamiltonian takes the form

H =
∑
ν=ρ,σ

1
2

∫ [
πuνKνΠ

2
ν + uν(πKν)−1

(
∂φν
∂x

)2
]
dx

+
2g1

(2πα0)2

∫
cos(
√

8φσ) dx+
2g3

(2πα0)2

∫
cos(
√

8φρ) dx. (1.8)

The harmonic part of the phase Hamiltonian on the first line corresponds
to the Tomonaga-Luttinger model, which is exactly solvable. The spectrum
shows no quasi-particles but only collective excitations and all the proper-
ties of the model then become entirely governed by the velocity uν and the
‘stiffness constant’ Kν of acoustic excitations, which depend on interactions.
This corresponds to the physics of the so-called Luttinger (LL) or Tomonaga-
Luttinger liquid. In the Tomonaga-Luttinger limit the power law singularity
of the AF spin response χAF(2kF , T ) ∼ T−γ is confirmed and the exponent

γ = 1−Kρ (1.9)

is expressed in terms of the charge stiffness constant Kρ. The absence of
quasi-particle excitations is captured by the power law decay of the density
of states at the Fermi level

N(0) ∼ (πvF )−1
( T

EF

)α
, (1.10)

with the exponent

α =
1
4

(Kρ + 1/Kρ − 2). (1.11)

The quasi-particle weigth at the Fermi level z(T ) ∼ Tα follows a similar
power law decrease.

In the presence of the sine Gordon terms due to the backscattering and
Umklapp couplings in the phase Hamiltonian Eq. (1.8), an exact solution can-
not be found in the general case. However, a perturbative scaling procedure
can be used for the various parameters that define the Hamiltonian [20]. For
rotationally invariant repulsive couplings, g1 is marginally irrelevant as found
in the many-body description (§1.2), and only the flow in the charge sector
essentially matters. In low order, one can write the following flow equations

dKρ

dl
= −1

2
K2
ρ g̃

2
3 ,

dg̃3
dl

= g̃3(2− 2Kρ). (1.12)
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For repulsive couplings, the bare Kρ = Kρ(g4, 2g2−g1) < 1, g3 is relevant and
scales to strong coupling, as found in the previous fermion scaling description
in Eqs. (1.2), while K∗ρ(l� 1)→ 0. An expression for the charge gap can be
found

∆ρ ∼Wg̃
1/[2(1−n2Kρ)]
U , (1.13)

where for half-filling Umklapp n = 1 and g̃U = g̃3 [20].
A charge gap is not limited to half-filling but may be present for other

commensurabilities too [23]. At quarter-filling for example, the transfer of
four particles from one side of the Fermi surface to the other leads to the
Umklapp coupling

H1/4 '
2g1/4

(2πα0)2

∫
dx cos(2

√
8φρ). (1.14)

The phase argument of this term differs and leads to a distinct flow equation

dg̃1/4

dl
= (2− 8Kρ)g̃1/4, (1.15)

which goes to strong coupling if Kρ < 1/4, namely for sizable long-range
Coulomb interaction [24]. The value of the insulating gap is given by (1.13)
by taking n = 2 and g̃U = g̃1/4 at quarter-filling (g̃1/4 ∼ (U/W )3 in the
Hubbard limit) [24,25]. It worth noting that in the special situation where the
quarter-filled chains are weakly dimerized, both half-filling and quarter-filling
Umklapp couplings are present in practice and should interfere one another
[26]. In effect for materials like (TM)2X, stoichiometry imposes half a carrier
(hole) per TM molecule, a concentration that cannot be modified by applying
pressure. Consequently, uniformly spaced molecules along the stacking axis
should lead to a situation where a unit cell contains 1/2 carriers, i.e., the
conduction band is quarter-filled. However, the non-uniformity of molecular
packing has been observed in early structural studies of the (TMTTF)2X
crystals [8]. The dimerization of the overlap between molecules occurs along
the stacks, a situation that is pronounced in the sulfur series, although it
is also encountered in some members of the (TMTSF)2X series (Table 1).
The impact of such a dimerization on the electronic structure is generally
quantified by a modulation of the intra-stack overlap integral, because both
longitudinal and transverse molecular displacements can contribute to the
intermolecular overlap and could make them half-filled band compounds.

1.2.2 The role of interchain coupling

Electronic materials like (TM)2X can be only considered as close realizations
of 1D interacting fermion systems so that interchain coupling, though small,
must be taken into account in their description. A non zero intermolecular
overlap perpendicular to the chains yields finite interchain hopping integrals
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Fig. 1.3. The generic phase diagram of (TM)2X.

t⊥b and t⊥c along the b and c directions, respectively. These play an essen-
tial role either in the restoration of Fermi liquid (FL) quasi-particles or in
establishing long-range order. Considering a square lattice of N⊥ chains, the
electron spectrum takes the form

Ep(k) = εp(k)− 2t⊥b cos k⊥b − 2t⊥c cos k⊥c, (1.16)

where k = (k, k⊥b, k⊥c) and t⊥c � t⊥b � EF . Owing to the strong anisotropy
in the transfer integrals, a one-electron coherent motion in the transverse
direction is not present at all temperatures. In the non interacting case for
example, the temperature scale below which thermal fluctuations no longer
blur the transverse quantum mechanical coherence for the electron is simply
Tx1 ∼ t⊥b, which can be seen as a one-particle dimensionality crossover. In the
presence of interactions, however, the quasi-particle weight z(T ) ∼ (T/EF )α

being reduced by the LL behavior, the condition becomes Tx1 ∼ z(Tx1)t⊥b
[27], namely

Tx1 ∼ t⊥b
( t⊥b
EF

)α/1−α
. (1.17)

The one-particle crossover scale Tx1 then decreases in the presence of in-
teractions. When a Mott insulating phase takes place in the 1D domain, α
reaches unity, Tx1 vanishes, and the transverse band motion is not possible
the single-particle coherence becomes spatially confined along the stacks.

Transverse coherence is nevertheless possible but it is achieved through
two-particle pair hopping, a mechanism for long-range order that is not
present in the Hamiltonian at the start but which emerges when interactions
along the stacks combine with t⊥,b,c in the one-dimensional region [28–31].
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For repulsive interactions and commensurate fillings, the most important pair
hopping processes that gradually emerges as a function of energy is an inter-
chain antiferromagnetic exchange,

δH⊥ =
∑
i,j

∫
dx J⊥i,j Si(x) · Sj(x).

In the one-dimensional regime, it is governed at the one-loop level by the flow
equation in the Fourier space

J̃ ′⊥(q0) = f̃(`) + J̃⊥(q0)γ(`)− 1
2

(J̃⊥(q0))2, (1.18)

where f̃(`) ' −2
∑
i=b,c[(g̃2(`)+g̃3(`))t⊥,i/W ]2e(2−2α(`))` and q0 = (2kF , π, π)

is the modulation wave vector of AF order. Here α(`) and γ(`) are scale de-
pendent power law exponents of the quasi-particle weight (Eq. (1.11)) and
antiferromagnetic susceptibility (Eq. (1.4)), respectively. Depending on the
sign of 2− 2α(`)− γ(`), different cases can be considered. Thus when a Mott
gap is formed at `ρ = lnEF /Tρ, 2− 2α(`)− γ(`) becomes negative above `ρ
and the solution of (1.18) can be put in the following simple Stoner form at
temperature T

J̃(q0) ≈ J̃⊥b + J̃⊥c
1− (J⊥b + J⊥c)χAF(2kF , T )

, (1.19)

where the low temperature 1D AF susceptibility χAF(2kF , T ) is given by Eq.
(1.4), for γ = 1 (K∗ρ = 0), and

J⊥b,c ∼ πvF
t∗2⊥b,c
∆2
ρ

. (1.20)

is the effective exchange in the b and c directions at the scale Tρ. From (1.19),
a singularity will then occur at

Tc ∼
(t∗2⊥b + t∗2⊥c)

∆ρ
, (1.21)

signaling a transition to a Néel ordered state. This result indicates that Tc
– essentially dominated by the exchange in the b direction – increases as the
Mott temperature Tρ decreases (Fig. 1.4). When the commensurability effects
are decreasing and Tρ eventually merges with the critical behavior of the
transition, antiferromagnetism becomes itinerant and corresponds to a SDW
state. The interchain exchange enters in the weak coupling domain where
2− 2α(`)− γ(`) is small but positive. This modifies the critical temperature,
which reads

Tc ∼ g̃∗2t∗⊥b, (1.22)

where g̃∗ = g̃∗2 + g̃∗3 and t∗⊥b = zt⊥b are respectively the effective amplitude
of electron-electron coupling and transverse hopping close to the transition.
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Fig. 1.4. Schematic phase diagram of a quasi-one-dimensional electron system at
repulsive coupling calculated from the scaling theory. Here g3 ∝ g1,2 is the running
Umklapp parameter for the amplitude of interaction.

The calculations show that Tc starts to decrease in this domain giving rise to
a maximum in Tc [30,32,33]. When the strength of 1D correlations becomes
weaker one quickly arrives at the regime where Tx1 becomes larger than the
above Tc so that the one-electron motion is no longer confined along the
stacks and interchain coherence develops before the onset of criticality linked
to the transition.

The temperature Tx1 then becomes the scale below which the nesting of
the whole Fermi surface becomes coherent. By looking at the effective spec-
trum Eq.(1.16) in which, t⊥b,c → t∗⊥b,c = z(Tx1)t⊥b,c, perfect nesting occurs
at q0 = (2kF , π, π) where the electron-hole symmetry E∗−(k) = −E∗+(k+q0)
holds. It follows that electron-hole excitations within the energy shell ∼ Tx1

above and below the coherent – warped – Fermi surface lead to a logarithmi-
cally singular response χ0(q0, T ) ∼ (πvF )−1 lnTx1/T in the Peierls channel.
This singularity is also found in the perturbation theory of the scattering am-
plitudes and for repulsive interactions, it yields an instability of the normal
state towards SDW long-range order. When perfect nesting prevails, a not too
bad approximation consists of neglecting the interference between the Cooper
and Peierls channels (we shall revert to the problem of interference below Tx1

later in § 1.4.6). This corresponds to the ladder diagrammatic summation.
In the scaling theory language, the ladder approximation corresponds to the
flow equation

dJ̃

d`
=

1
2
J̃2 + ...., (1.23)

for an effective coupling constant J̃ = g̃2 + g̃3 − J̃⊥ that defines the net
attraction between an electron and a hole separated by q0. The integration
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leads to the Stoner expression

J̃(T ) =
J̃∗

1− 1
2J
∗χ0(q0, T )

, (1.24)

where J̃∗ is the effective SDW coupling obtained from Eqs. (1.18) and (1.2)
at `x1 = lnEF /Tx1 , and χ0(q0, T ) = (πvF )−1 lnTx1/T . The above expression
leads to a BCS singularity at the SDW critical temperature

Tc = Tx1 e−2/J∗ , (1.25)

which decreases as the interactions decrease. Nesting frustration is required
to suppress the transition [34, 35]. When nesting deviations are sufficiently
strong, however, the FL remains unstable. Actually, when the partial but
finite interference between the Peierls and the Cooper channels is restored,
the system turns out to develop a superconducting instability. We shall return
to this in § 1.4.6.

1.3 The Fabre salts series

1.3.1 The generic (TM)2X phase diagram

Although the (TM)2X generic phase diagram can be established by measuring
the transport properties of various compounds, it has been most rewarding to
use a single compound, namely (TMTTF)2PF6, and the help of a high pres-
sure to span the generic diagram in Figures 1.2 and 1.3. The study of this
strongly insulating system (TMTTF)2PF6 under high pressure has been very
useful not only because it has led to the stabilization of superconductivity
in a strongly insulating sulfur compound [12], but also because its location
at the left end of the phase diagram has allowed several key properties of
quasi 1-D conductors to be carefully monitored under pressure. For instance,
the longitudinal or transverse transports activation and the one-dimensional
deconfinement arising under pressure [11], which will be discussed later in
§1.3.3. The phase diagram in Fig. 1.2 where (TMTTF)2PF6 is the reference
compound at ambient pressure has been obtained from the temperature de-
pendences of ρc(T ) and ρa(T ) to be discussed below. In the low pressure
region (see Fig. 1.5, P <10 kbar) ρc(T ) and ρa(T ) are both activated, with
∆ρ,c being about 30% larger than ∆ρ,a. At higher pressures, the activation
of ρc follows a gentle decrease, while ∆ρ,a collapses abruptly at a pressure of
about 14 kbar, which also marks the onset of a non-monotonous temperature
dependence of ρc with a maximum arising at the temperature denoted T ?.
Above 14 kbar, ρa(T ) displays a metallic temperature dependence down to
the sharp metal-insulator transition below 20 K, while ρc(T ) remains indica-
tive of a weakly insulating state above the temperature T ?, which increases
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under pressure. The different pressure dependences observed for longitudinal
and transverse transport will be considered in the context of the pressure-
induced deconfinement in §1.3.3.

1.3.2 Longitudinal transport

A major problem encountered with the (TM)2X materials (as well as in most
organic conductors) is the very strong pressure (or volume) dependence of
their electronic properties, particularly in transport measurements [36–38].
This strong volume dependence is going along a particularly large thermal
expansion. Hence, the only temperature dependence that can be compared
with the prediction of the theory is the one measured at a constant volume.
As all temperature dependences are obtained experimentally under constant
pressure, a transformation to the constant volume T -dependence must be
performed [37,38], in order to make a significant comparison with the theory.
Fortunately, this correction is not that relevant for the case of (TMTTF)2PF6

under high pressure since the compressibility of these materials is known to
decrease under pressure [39]. This is no longer the case when the metallic
phase is already stable at ambient pressure as we shall see later for the case
of (TMTSF)2PF6 (§ 1.4.1).

The insulating character of these materials with partly filled conduction
bands is not expected in the framework of non interacting electrons. The rea-
son for this must be the existence of strong repulsive interactions between 1D
carriers. One explanation for the different values and pressure dependences
of the activation energies can be taken as an evidence for in-chain conduction
made possible by thermally excited 1-D objects similar to solitons in conduct-
ing polymers [40], whereas transverse transport requires the excitation of real
quasi-particles (QP’s) through a Mott-Hubbard gap larger than the soliton
gap as we shall see. Contrasting with the strongly pressure dependence of the
transport properties, the susceptibility is hardly sensitive to the location of
a specific compound in the generic phase diagram. The spin susceptibility is
dropping by about 40% between room and low temperature for all materials,
although the actual magnitude and the low temperature behaviour depend
on the compound (see Fig. 1.6). According to the 1D result Eq. 1.3 in the
high temperature domain, a value of g̃1 ∼ 0.5 can reasonably account for the
temperature dependence of the magnetic susceptibility.

Although the insulating behavior of (TMTTF)2X salts can be clearly
ascribed to their commensurate band filling, a closer examination is needed
to determine which of the Umklapp scattering channels 1/2- or 1/4-filled is
the most active. In the presence of such a gap, the transport is activated at
low temperature ρa ∝ e∆ρ,a/T but is expected to vary according to the power
law

ρa ∝ T 4n2Kρ−3 (1.26)
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Fig. 1.5. (TMTTF)2PF6, longitudinal (left) and transverse (right) resistances ver-
sus temperature at different pressures. After [11]
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Fig. 1.6. Temperature dependence of the uniform spin susceptibility χσ of
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[42] [(TMTTF)2Br]; [43] [(TMTSF)2PF6]; [44] [(TMTSF)2ClO4]

in the high temperature regime, i.e., T > ∆ρ,a [23]. The material resembles
a metal at high temperature along the longitudinal direction. In the high
T 1-D regime (T > t⊥b), the picture of non-coupled chains is approached.
Therefore, the density of quasiparticle states should resemble the situation
that prevails in a Luttinger liquid namely, N(ω) ∼| ω |α, where α is related
to a bare Kρ through Eq. (1.11), forgetting about the influence of the Mott
gap (supposedly smaller than the temperature).
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1.3.3 Transverse transport and deconfinement

Under a pressure higher than 14 kbar the behavior of the (TMTTF)2PF6

resistance along the direction of the weakest coupling, i.e., along the c-axis,
displays an insulating character with a maximum around 80-100 K and be-
comes metallic at lower temperatures, although remaining several orders of
magnitude above the Mott-Ioffe critical value, which is considered as the
limit between metal and insulating-like transport [45]. Figure 1.7 displays the
temperature dependence of ρc in (TMTTF)2PF6, and also for other mem-
bers of the (TM)2X family with different anions such as (TMTTF)2BF4 and
(TMTTF)2Br .
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Fig. 1.7. Temperature dependence of the transverse transport along the c-axis in
several compounds belonging to the (TM)2X series studied under pressure. The
temperature of the maximum of resistivity shows the location of the dimensional
crossover T ?, which is strongly pressure dependent for each compound. The re-
sistivity upturn at low temperatures represents the stabilization of the insulating
SDW phase. In case of the selenium compound (TMTSF)2ClO4, the crossover lies
around room temperature whereas for the sulfur compound (TMTTF)2Br a re-
sistivity maximum is seen only after the constant volume correction is taken into
account. After Ref. [46]

The insulating character of the transverse transport has been interpreted
as the signature of a non Fermi liquid behavior for carriers within planes
(chains) [47]. When transverse transport along the c-direction is incoherent,
transverse conductivity probes the physics of the a − b planes and conduc-
tivity in terms of the transverse coupling t⊥c is expressed in the tunneling
approximation as

σc(ω, T )∝ t2⊥c
∫
dx

∫
dω
′
A1D(x, ω

′
)A1D(x, ω + ω

′
)
f(ω

′
)− f(ω

′
+ ω)

ω
,
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(1.27)

where A1D(x, ω) is the one-electron spectral function of a single chain and
f(ω) the Fermi-Dirac function. For a− b planes made of an array of weakly
interacting Luttinger chains, Eq. (1.27) leads to a power law temperature
dependence for the c-axis conduction. The temperature at which the c-axis
transport switches from an insulating to a metallic temperature dependence
corresponds to a crossover between two regimes: a high temperature regime
with no QP weight at the Fermi energy (possibly a TL liquid in the 1D
case) and another regime in which the QP weight increases with decreasing
temperature. This interpretation does not imply that the transport along
the c-direction must also become coherent below the cross-over. The c-axis
transport may well remain incoherent with a FL being established in the
a − b plane at temperatures below T ?. The temperature dependence of the
resistivity along the least conducting direction is thus expressed as [48]:

ρc(T ) ∝ T 1−2α. (1.28)

Consequently, the temperature dependence of transport properties along the
a and c-axes above T ? should possibly lead to a consistent determination of
Kρ.

Now, regarding (TMTTF)2PF6, we are facing a very interesting system,
since the evolution from a Mott insulator to a metal can be carefully studied
under pressure in a single sample and a decrease in compressibility under
pressure makes constant volume correction less significant for temperature
dependences measured at high pressures. Turning to the evaluation of the
correlation coefficient from the temperature dependence of ρc, we end up
fitting the data for (TMTTF)2PF6 in the pressure domain around 12 kbar,
Fig. 1.5, with a very small value of Kρ (or large values of α) which is not
compatible with the value Kρ = 0.23 derived from the far infrared (FIR,
see below) and NMR data [42]. Consequently, the Mott gap seems to be
important in this temperature regime governing the excitation for the motion
of single particles along c. Tentatively, one can expect a transverse resistivity
behaving according to [48],

ρc(T ) ∝ T 1−2αe∆ρ,c/T . (1.29)

Since the Mott -Hubbard gap varies as a power of Kρ, even a small varia-
tion in the ratio between the Coulomb interaction and the bandwidth under
pressure can explain a significant decrease of all gaps moving from the left
to the right in the generic phase diagram. To summarize it is interesting to
have a look at the data of longitudinal and transverse transports obtained in
(TMTTF)2PF6 under pressure displayed on Fig. 1.8. The transverse trans-
port along c is due to the hopping of quasi-particle and therefore requires
an activation through a gap, which is the remanence of the Mott-Hubbard
gap. It survives the onset of the dimensional cross-over. Thus we make the
important identification
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T ? ≡ Tx1 (1.30)

between the temperature at which the metallic behavior in ρc is restored
and the single-particle dimensionality crossover Eq. (1.17). From Fig. 1.8, we
see that T ? goes to zero when the insulating behavior in the longitudinal
transport is restored, which is at 14 kbar for a system like (TMTTF)2PF6,
namely at the onset of electron confinement where the renormalization of
t∗⊥b,c is strong (Eq. (1.17)). As for the longitudinal transport, it proceeds via
the thermal excitation of 1-D objects similar to the solitons in conducting
polymers through a gap smaller than the quasi-particle gap [40]. They loose
their one-dimensional character and thus acquire a metallic power law tem-
perature dependence when the transverse coupling becomes pertinent under
pressure (i.e. above 14 kbar).

Fig. 1.8. Pressure dependence of the transport activation in (TMTTF)2PF6. The
activation for the c axis transport (∆c ≡ ∆ρ,c, in the text) although decreasing
under pressure survives up to high pressures, while the longitudinal transport (∆a ≡
∆ρ,a, in the text) is no longer activated above 14 kbar when the dimensional cross-
over arises at the finite temperature T ?. After Ref. [11]

1.3.4 Far infrared response in the (TM)2X series

An other signature of the Mott-Hubbard gap has been given by the frequency-
dependent conductivity σ(ω) measured in various salts of the (TM)2X se-
ries exhibiting very different values of the conductivity at room tempera-
ture [49](see Fig. 1.9). The peak of the conductivity at a frequency ω0 cor-
relates with the magnitude of the room temperature conductivity, namely
both sulfur salts (TMTTF)2PF6 and (TMTTF)2Br , which are insulating,
exhibit a conductivity peak around ω0 ≈ 1000 cm−1. In (TMTSF)2PF6 the
peak occurs around 200 cm−1 that is, very close to the zero frequency. Both



18 C. Bourbonnais and D. Jérome
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optical and transport data give 2∆ρ,a = 800 − −1000 K in (TMTTF)2PF6

at ambient pressure [11]. The difference between Kρ for selenium and sulfur
compounds (Kρ = 0.18 for the latter material) is a result of the difference
between their bare bandwidths, since on-site repulsion, being a molecular
property, is likely to be less sensitive to pressure than the intermolecular
overlap along the stacking axis.

Nuclear Magnetic Resonance

The measurement of the temperature dependent nuclear spin-lattice relax-
ation rate in NMR denoted by T−1

1 is another tool that has played a quite
important role in the description of low energy electron spin correlations in
(TM)2X [42]. The connection between nuclear relaxation and the electron
spin dynamics is given by the Moriya T−1

1 expression

T−1
1 = |A |2 T

∫
χ′′(q, ω)

ω
dDq, (1.31)
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which is taken in the zero Larmor frequency limit (ω → 0) and where A is
proportional to the hyperfine matrix element. The relaxation of nuclear spins
gives relevant information about the static, dynamics and dimensionality D
of electronic spin correlations. In D = 1, this expression gives a relatively
easy access to the interaction parameter Kρ that enters in most power laws
expressions in one dimension [18,27,51]. According to Eqns. (1.3) and (1.4),
the enhancement of the imaginary part of the spin susceptibility χ′′ occurs
at q ∼ 0 and q ∼ 2kF , which yields

T−1
1 ' C0Tχ

2
σ(T ) + C1T

Kρ . (1.32)

Here C0 and C1 contains weak logarithmic corrections in temperature. As a
function of temperature, two different behaviors can be singled out. At high
temperature, where uniform spin correlations dominate and those at 2kF
are small, the relaxation rate is governed by the Tχ2

σ(T ) term. In the low
temperature domain, however, 2kF spin correlations are singularly enhanced,
while uniform correlations remain finite so that T−1

1 ∼ TKρ .
Consider for example the insulating compounds (TMTTF)2X, we have

seen in § 1.2.1 that the renormalized charge stiffness K∗ρ → 0 essentially van-
ishes below the Mott scale. The resulting behavior for the relaxation rate
becomes

T−1
1 ∼ C1 + C0Tχ

2
σ. (1.33)

As shown in Fig. 1.10, this behavior indeed emerges for (TMTTF)2PF6 salt
when the relaxation rate is combined to the spin susceptibility data (Tχ2

σ)
in the MI phase above three-dimensional ordering [51, 52]. A similar linear
behavior of T−1

1 vs Tχ2
σ, with a finite intercept confirming the K∗ρ = 0 value

of the charge stiffness, is invariably found in all insulating materials down to
the low temperature domain that surrounds the three-dimensional magnetic
or lattice distorted long-range order [37,42,53].

As one moves to the right-hand-side in the phase diagram of Fig. 1.3, we
see that the T−1

1 vs Tχ2
σ law is relatively well obeyed over a large temperature

domain in the normal phase. If one takes (TMTSF)2PF6 for example, devia-
tions are seen only below 150K or so indicating that Kρ would be finite over
the whole temperature range [42]. For (TMTSF)2ClO4, T−1

1 enhancement
coming from antiferromagnetic correlations emerges at even lower tempera-
ture (∼ 30K) [27].

1.3.5 The ordered states at low temperature

The spin-Peierls instability of the sulfur compounds

The two compounds (TMTTF)2PF6 and (TMTTF)2AsF6 of the Fabre se-
ries develop an instability of the MI phase that involves both spins and lat-
tice degrees of freedom. X-ray diffuse scattering measurements of Pouget
et al. [54], on both compounds have soon revealed the existence of diffuse
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scattering lines at the wave vector 2kF showing the onset of 1D lattice soft-
ening below the temperature scale T 0

SP ≈ 60K for (TMTTF)2PF6 and 45K
for (TMTTF)2AsF6. These lines condense into satellite reflections at the
transition temperature TSP ≈ 19K for (TMTTF)2PF6 salt and 15K, for
(TMTTF)2AsF6, where a static lattice distortion takes place at the wave
vector q0 = (2kF , π, π). Recent elastic neutron scattering experiments did
confirmed the existence of such a static distortion at q0 for (TMTTF)2PF6

below TSP [55]. Since both the softening and the transition occur in the Mott
insulating state where only spin excitations are gapless, one thus deals with
a spin-Peierls (SP) transition with a pronounced quasi-1D character. The
expected non magnetic nature of both SP fluctuations and long-range order
has been confirmed by the temperature dependence of the spin susceptibility
(Fig. 1.6) and nuclear spin-lattice relaxation rate [42,56]; these quantities are
reduced in the fluctuation regime and show thermal activation below TSP.

Following the example of the Peierls transition, the SP instability proceeds
from the coupling of singular 1D bond-order-wave (BOW) electronic correla-
tions to acoustic phonons at 2kF [57–59]. Unlike the Peierls case, however, the
coupling becomes singular in the MI state instead of the metallic phase. The
microscopic theory predicts a power law singularity in the 1D electronic BOW
response below the Mott scale (Eq. 1.5), where for weakly dimerized chains
systems like (TMTTF)2X, the power law exponent γBOW = 1 (K∗ρ = 0), as
also found for the antiferromagnetic spin response Eq. (1.9). The enhance-
ment of the electron-phonon interaction at 2kF by BOW correlations can be
worked out by perturbation theory [57, 58]. In the random phase approxi-
mation, the static temperature electron-electron vertex part induced by the
exchange of 2kF phonons takes the form

Γph(2kF , T ) =
g0
ph

1− g0
phχBOW(2kF , T )

, (1.34)
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where g0
ph is the square of the bare 2kF electron-phonon matrix element. A

singularity of the temperature vertex part will then develop at the mean field
temperature

T 0
SP = c g̃0

phTρ, (1.35)

where c& 1. Since there is no phase transition in one dimension, T 0
SP is not

a true transition temperature but a temperature scale of lattice fluctuations
that can be identified with the softening temperature seen in X-ray exper-
iments. Although higher order fluctuations corrections will bring back the
transition at T = 0, T 0

SP remains the right temperature scale for the onset of
short-range fluctuations [57].

As for long-range SP order, it is driven by an interchain interaction which
we denote V⊥, whose contributions combine Coulomb, interchain hopping
and three-dimensional phonons [32,58]. These coupling favor staggered bond
order transversally to the chains at the wave vector q0. A molecular field
treatment of interchain coupling, which takes into account one-dimensional
fluctuations rigorously, leads to the mean-field expression for the spin-Peierls
susceptibility

χSP(q0, T ) =
χ1D,SP(2kF , T )

1− V⊥χ1D,SP(2kF , T )
(1.36)

where χ1D,SP is the 1D spin-Peierls fluctuations susceptibility. The singularity
in χSP occurs at

TSP = T 0
SPf(V⊥/T 0

SP), (1.37)

where from the singular behavior of χ1D,SP at low temperature [57], it is
found that f(V⊥/T 0

SP) ∼ 1/3 for V⊥/T 0
SP � 1 [58]. The resulting estimation

TSP ∼ T 0
SP/3 apparently holds for most electronically driven quasi-1D struc-

tural transitions in the adiabatic limit [60]. The observed values of the ratio
TSP/T

0
SP in (TMTTF)2PF6 and (TMTTF)2AsF6 are compatible with this

estimation.
The respective TSP of (TMTTF)2AsF6 and (TMTTF)2PF6 evolve dif-

ferently under low pressure. For (TMTTF)2AsF6, TSP first increases under
pressure and reaches a maximum when the charge ordering temperature TCO

(see below) merges with TSP at 1.5 kbar, and finally decrease at higher pres-
sure [62]. Charge order breaks the inversion symmetry in the unit cell and
acts as a 4kF charge-density-wave potential on molecular sites. The potential
reduces the strength of BOW correlations [63], and in turn the amplitude of
both T 0

SP and TSP. For (TMTTF)2PF6, however, TCO occurs at much lower
temperature [64], and TSP shows essentially a constant decrease under pres-
sure. It finally goes down rapidly, extrapolating to zero at PQCP ≈ 9kbar,
where it competes with a Néel state [52, 61, 65]. This critical pressure corre-
sponding to the zero temperature extrapolation of the critical lines can be
put in the category of a quantum critical point (Fig. 1.11) [61].
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Fig. 1.11. The phase diagram of (TMTTF)2PF6 near the quantum critical point
at PQCP. After Ref. [61]

The decrease of T 0
SP and TSP under pressure can be qualitatively under-

stood if one considers that the drop in Tρ weakens electronic BOW correla-
tions, which according to Eq. (1.35), reduces T 0

SP (Figs. 1.11 and 1.2). As
T 0

SP carries on decreasing with pressure, it will reach values that become
small compared to the typical energy ωD of 2kF phonons (ωD ∼ 100K in
these materials [66]), where quantum effects enter into play [67–69]. In ef-
fect, the above expression for T 0

SP has been obtained for ‘static’ phonons,
in the so-called adiabatic approximation where the molecules are supposed
to have an infinite mass. Adiabaticity is a reasonable assumption provided
that ωD/2πT 0

SP � 1 [67]. As T 0
SP decreases and ωD increases under pres-

sure, however, the adiabatic condition will not be satisfied any more and the
lattice softening will be reduced by the zero point motion of the molecular
lattice. It has been shown that a quantum-classical crossover is expected at
ωD/πT

0
SP(P ) ≈ 1, where quantum corrections completely suppress T 0

SP and
in turn TSP [67,68]. For a system like (TMTTF)2PF6, this would take place
after a reduction of Tρ by a factor of two or so, which according to Fig. 1.3,
corresponds to a pressure of the order of PQCP.

Charge ordering [70]

The MI state of most members of the Fabre series is characterized by another
temperature scale connected to a different type of long-range order. The study
of the temperature dependence of electrical permittivity for (TMTTF)2PF6

and (TMTTF)2AsF6 has indeed revealed the existence of a singularity in the
dielectric constant at 70K and 100K, respectively [71,72]. This singularity, not
seen in the magnetic susceptibility (Fig. 1.6), is associated with an instability
in the charge sector. The nature of this state was clarified at the same time
by Chow et al. [64], who showed from NMR that the instability is actually a
continuous phase transition towards a charge disproportionation in the unit
cell. NMR does not tell, however, at which wave vector this charge ordered
(CO) state takes place. In this regard, Monceau et al. [73], suggested that the
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anion lattice may undergo a uniform displacement when coupled to the 4kF
electron charge instability along the stacks. In this picture, the CO instability
in (TMTTF)2X would be akin in most cases to a ferroelectric phase transition
with a divergent dielectric constant.

The experimental identification of a charge-ordered state in (TMTTF)2X
salts lifted a sizable part of the veil surrounding the nature of the so-called
‘structureless’ phase transition that was detected much earlier from transport
measurements for several members of the (TMTTF)2X series [74,75]. It also
puts an additional scale in the generic phase diagram of Fig. 1.3. Moreover,
for a compound like (TMTTF)2SbF6 with a larger centro symmetrical anion,
it was shown from NMR under pressure that the existence of both a CO
transition at TCO ' 150K and a Néel state at Tc ' 7K forces to extend the
pressure scale of Fig. 1.3, further on the left [76], where a Néel rather than a
spin-Peierls state is stable. This Néel state is suppressed under pressure and
replaced by a non magnetic phase, presumably of the spin-Peierls type such
as found in (TMTTF)2PF6 and (TMTTF)2AsF6 [76], and which has been
discussed above. At ambient pressure, (TMTTF)2SbF6 would then be found
at the left of (TMTTF)2PF6, which defines the origin on the pressure scale
of Fig. 1.3. Other compounds like the 7K antiferromagnet (TMTTF)2SCN
would also be located in the same region of this extended phase diagram.

It is not clear, however, how far on the right-hand-side of Fig 1.3 CO order-
ing is found. As mentioned above, it is known to be rapidly suppressed under
pressure for compounds like (TMTTF)2AsF6 and (TMTTF)2PF6. However,
it has been claimed to be present in compound like (TMTTF)2Br at ambient
pressure [71].

The possibility for a CO order state, as a 4kF charge instability, is pre-
dicted to take place in purely quarter-filled one-dimensional system for small
charge stiffness Kρ < 1/4 (Eq. (1.15)), namely for sizable long-range Coulomb
interaction where it coincides with an insulating state [24, 77]. It has been
found also for models of interacting electrons in weakly dimerized chains with
and without anions displacements [26,78], in the framework of mean-field the-
ory [79] and numerical calculations [80].

The Néel order

Sufficiently above PQCP in Fig. 1.3, antiferromagnetic correlations within
the MI state are much less affected by lattice SP fluctuations, which are
sizably weaker in this pressure range. This is shown in the phase diagram by
the absence of a spin pseudo gap from the temperature dependent nuclear
relaxation rate in (TMTTF)2PF6 at 13 kbar and in (TMTTF)2Br at 1 bar
[42]. This is also confirmed in the case of (TMTTF)2Br by X-ray diffuse
scattering experiments at ambient pressure [81]. The observation in these
conditions of a temperature independent nuclear relaxation rate for both
materials, indicates that the power law exponent of the singularity in the AF
response in Eq.(1.4) below the Mott scale Tρ is γ = 1(K∗ρ = 0) [42]. We have
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seen in § 1.2.2 that in the presence of a Mott gap, ∆ρ > t⊥b (here ∆ρ ≡ ∆ρ,a),
electron-hole bound pairs are formed and a coherent electron band motion
in the transverse directions cannot take place. The propagation of order in
the transverse directions leading to a Néel ordered state is provided by the
antiferromagnetic interchain exchange J⊥b,c given by Eq. (1.20). We have
seen that the temperature scale for the Néel ordering is determined by the
singularity of the exchange coupling at the one-loop level (Eq. (1.18)), which
leads to Tc ∝ 1/∆ρ (Eq. (1.21)).

This result indicates that Tc – essentially dominated by the exchange in
the b direction – increases as the Mott gap ∆ρ decreases, a feature commonly
observed in the Fabre series (Figs. 1.3 and 1.2) [82,83]. It is worth noting that
in the quarter-filled Mott insulator compound (EDT-TTF-CONMe2)2AsF6,
the interchain exchange is also the driving force of antiferromagnetic long-
range order. In these systems too, Tc is found to increase as ∆ρ is decreasing, a
behavior that proved to be independent of the commensurability of Umklapp
scattering processes behind the insulating gap (Fig. 1.4).

When the pressure is further increased, the Mott insulating and Néel criti-
cal scales meet and then the spins order themselves directly from the metallic
state. Antiferromagnetism becomes itinerant in character and corresponds to
a SDW state. The interchain exchange enters in the weak coupling sector
and continues to be active, albeit on a relatively small pressure range with
Tc given by Eq (1.22). The calculations show that Tc starts to decrease in
this restricted pressure domain giving rise to a maximum in Tc seen in exper-
iments for (TMTTF)2Br (Fig. 1.12) [82, 83], (TMTTF)2PF6 [12] (Fig. 1.2)
and mixed selenium-sulfur compounds (TMDMTSF)2PF6 [84,85]. This weak
coupling domain coupling quickly evolves to a regime where t∗⊥b and then the
single electron transverse coherence length along the b direction is increasing
rapidly under pressure, signaling the beginning of a coherent band motion
perpendicular to the chains. This yields the onset of electronic deconfinement
and coherent nesting of the Fermi surface at T ? [86]. The value of Tc in this
latter domain also decreases when the couplings decrease under pressure (Fig.
1.4).

1.4 The Bechgaard salts

1.4.1 The metallic phase

The strongly metallic character of the (TMTSF)2PF6 salt has been one of
the highlights in the search for organic conductors [87]. The temperature
dependence of the longitudinal resistivity follows a power law T 1.4 from
300K down to about 100K. Below 35K, the resistivity of (TMTSF)2PF6 or
(TMTSF)2AsF6 is quadratic in temperature ρa(T ) = ρ0 + AT 2, which is
valid down to the metal-insulator transition due to the onset of an itinerant
antiferromagnetic state at 12K (Fig. 1.13).
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Fig. 1.12. Variation of the critical AF critical temperature as a function of hydro-
static pressure in (TMTTF)2Br. In the inset, a zoom of the maximum of Tc. After
Ref. [82]

Fig. 1.13. Temperature dependence of the (TMTSF)2PF6 longitudinal resistivity
plotted versus T 2 for pure and irradiated samples. After [88]

For high quality samples the resistance ratio ρa(300K)/ρ0 can reach val-
ues as large as 800 [88] (Fig.1.13). Furthermore, an interesting behaviour en-
countered in (TMTSF)2PF6 materials (and also in most organic conductors)
is the very strong pressure (or volume) dependence of their electronic prop-
erties, particularly the transport property [36–38]. In addition, the thermal
expansion of these materials is particularly large. Hence, the only tempera-
ture dependence that can be compared with the prediction of the theory is
the one measured at a constant volume. As all temperature dependences are
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obtained under constant pressure, a constant volume transformation must
be performed. An example is given in Fig. 1.14 by the longitudinal trans-
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Fig. 1.14. Temperature dependence of the (TMTSF)2PF6 longitudinal resistivity
at constant volume showing quasi linear T -dependence, with the thermal depen-
dence of the lattice parameter a displayed in the inset. After [38]

port of (TMTSF)2PF6 behaving at high temperature similar to T 2 under
ambient pressure but varying sublinearly (∼ T 0.93) from 300 to 150 K, once
the volume correction is taken into account [38]. The experimental power
law of longitudinal resistivity leads in turn to n2Kρ=0.98 according to the
theory of resistivity [23]. Note that a similar power law for the tempera-
ture dependence of longitudinal transport (∼ T 0.93) can also be observed for
two sulfur-compounds, BF4 and PF6 under high enough pressure when the
correction to constant volume becomes negligible.

In the early days of the (TMTSF)2X compound, the lattice dimeriza-
tion was believed to govern entirely the amplitude of the Mott-Hubbard
gap [16, 17]. When the half-filled scenario is privileged, namely (n = 1).
Hence, n2Kρ=0.98 leads to a bare value of Kρ close to unity implying a
weakly coupled electron gas. This situation of a very weak coupling is dif-
ficult to reconcile with an enhancement of the spin susceptibility and the
characteristic enhancement of the nuclear spin relaxation rate [42,89] but an
additional argument against this weak coupling is made possible by the un-
usual behavior of transverse transport (Eq. (1.28)) [48]. The weak coupling
value for Kρ ≈ 1 derived from the temperature dependence of longitudinal
transport and the optical data (see below) would imply α ≈ 0 and conse-
quently a metal-like temperature dependence for ρc(T ) which is at variance
with the data.

More recently, an alternative interpretation based on new experimental
results has been proposed assuming that the 1/4-filled scattering could justify
the existence of the Mott gap in the entire (TM)2X series [23]. With such a
hypothesis (n = 2), the fit of the experimental data would thus lead to
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Kρ = 0.23 and α = 0.64 (see below, discussion on optical response) [90].
This bare value for Kρ agrees fairly well in the 1/4-filled scenario at the
very least at high temperature where the influence of half-filling Umklapp
should be weak [26, 89]. This value that would imply U/W = 0.7 for the
Hubbard parameter is compatible with plasma edge measurements and the
enhancement in the spin susceptibility [42, 89]. Such a strong coupling value
for the bare Kρ implies that a system such as (TMTSF)2PF6 lies at the border
between a 1D Mott insulator and a Luttinger liquid, though slightly on the
insulating side. (TMTTF)2Br is another particularly interesting system, in
which the pressure coefficient of the resistivity is very large. Hence, it is the
correction to constant volume which makes the maximum in ρc to appear
around 150K, while this maximum is absent in the constant pressure runs,
(see Fig. 1.7).

The other approach to the correlation coefficient is given by the far in-
frared optical studies of (TMTSF)2PF6, which have been very helpful for
the determination of Kρ since the FIR gap of about ∆ρ,a = 200 cm−1 in
(TMTSF)2PF6 has been attributed to the signature of the Mott-Hubbard
gap [90]. Consequently, the frequency dependence of the conductivity above
the Mott gap is closely linked to the dynamics of the excited carriers in
the 1D regime. The theory predicts a power law dependence for the optical
conductivity at frequencies larger than the Mott gap [23] namely,

σ1,a(ω) ∼ ω4n2Kρ−5, (1.38)

at ω > 2∆ρ,a see Fig.(1.15).

Fig. 1.15. Far infra red optical conductivity (E‖a) data of (TMTSF)2PF6 , exper-
iment [90] for T = 300, 100, 20K(left) and theory for a doped Mott insulator [23]
(right)

According to the optical experimental data (see Fig.1.16 [90]), σ1,a(ω) ∝
ω−1.3 at high frequency leading to n2Kρ=0.93. This value for the correlation
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Fig. 1.16. Optical conductivity above the Mott-Hubbard gap in several selenide
conductors analyzed in terms of a power law ω−1.3. After Ref. [90]

coefficient is fairly close to the one derived above from parallel transport data
but none of these experiments allow by themselves to discriminate between
half or quarter-filled Umklapp scattering.

1.4.2 Pseudogap and zero frequency mode in the metallic phase
of (TMTSF)2X

It is also most illuminating to have a look at the conductivity in the far
infrared regime. A large gap of order 1000K is observed in the frequency
dependence of the FIR conductivity of sulfur compounds [91]. This is in
line with the activation energy of the DC conductivity in those compounds.
However, the surprise arose for selenium compounds which behave appar-
ently like normal metals as far as DC transport is concerned, in spite of the
marked gap observed in the FIR regime at low temperature. The apparent
normal behavior of the resistivity varying quadratically in temperature for
(TMTSF)2ClO4 or (TMTSF)2PF6 above the SDW transition could lead to
the misleading conclusion of a 2 or 3-D Fermi gas in which the tempera-
ture dependence of the transport is governed by e-e scattering. However, the
analysis of the conductivity in terms of the frequency reveals quite a striking
breakdown of the Drude theory for single-particles. The inability of the Drude
theory to describe the optical conductivity has been noticed by a number of
experimentalists working on (TMTTF)2X with X=ClO4, PF6 or SbF6 [92].
When the reflectance of (TMTSF)2ClO4 in the near-infrared is analyzed with
the Drude model in the whole range of temperatures from 300 down to 30K
the electron scattering rate is found to decrease gradually from 2.5×1014 s−1

at room temperature to 1.3 × 1014 s−1 at 30K [93]. Even if the RT value is
not far from the value from DC conductivity, a drastic difference emerges
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at low temperature as σDC increases by a factor about 100 between RT and
30K [94], as compared to the factor 2 for the optical lifetime.

An other striking feature of the optical conductivity has been noticed
when the Kramers-Krönig transformation of the reflectance is performed in
a broad frequency domain for (TMTSF)2ClO4 as well for all conducting ma-
terials at low temperature. Given the usual Drude relation σDC = ω2

pτ/4π
between transport lifetime and plasma frequency data (the plasma frequency
has been found nearly temperature independent [49, 93]) and the measured
resistance ratio for ρa of about 800 between RT and 2K obtained in good qual-
ity measurements, the Drude conductivity in the frequency range ≈ 40 cm−1

should amount to at least 4000Ωcm−1 [95, 96]. The measured optical con-
ductivity is at most of the order of 500Ωcm−1 [95]. Consequently, the rise in
the conductivity as ω → 0 has been taken in (TMTSF)2ClO4 as well as in
the other salts with PF6 or SbF6 as an evidence for a hidden zero frequency
mode. This mode is actually so narrow that it escapes a direct determina-
tion from K-K analysis of the reflectance, which is limited to the frequency
domain above 10 cm−1. Estimates of the mode width have been obtained
using the DC conductivity and the oscillator strength Ω2

p of the mode with
σDC = Ω2

pτ/4π where Ωp is measured from the first zero crossing of the
dielectric constant. This procedure gives a damping factor Γ = 0.005 cm−1

and 0.09 cm−1 at 2 and 25K respectively, in (TMTSF)2ClO4 [96]. The con-

Fig. 1.17. Far infra red data of (TMTSF)2ClO4. The dashed line is the Drude
behaviour with 1/τ = 3.5 cm−1 and ωp = 104 cm−1. After Ref. [96]

firmation of a very long scattering time for the DC conduction has also been
brought by the rapid suppression of Tc by non-magnetic defects in the non
conventional superconductor (TMTSF)2ClO4 leading to Γc = 0.56 cm−1 at
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low temperature [97], meaning that the electron lifetime at low temperature
is actually much longer than the value inferred from a Drude description.

There is now a wealth of experimental evidences showing the development
of a narrow frequency mode in the Mott gap of (TMTSF)2ClO4 and related
conducting compounds. From FIR data in (TMTSF)2PF6, it has also been
shown that the narrow mode carries only a small fraction (a few percent) of
the total spectral weight [49, 90], but it is this mode that explains the very
large value of the DC conduction observed at low temperature.

1.4.3 Quarter-filled compounds

Even if the debate between 1/2 and 1/4 fillings may be relevant for (TM)2X,
this is no longer the case for new synthesized compounds in a family whose
general structure precludes any dimerization. The structural peculiarity of
the salt (EDT− TTF− CONMe2)2AsF6 is the absence of inversion center
between adjacent molecules in stacks and instead the presence of a glide
symmetry plane [98] (see Fig.1.18). The analysis of the transport data of
(EDT− TTF− CONMe2)2AsF6 has shown that in spite of the existence of
a glide symmetry plane, the carriers are localized, and even more localized
than in the most insulating salts of the Fabre series known at present. Since
the localization in this compound cannot be ascribed to a 1/2−Umklapp
scattering or to the Anderson localization, 1/4-Umklapp scattering seems to
be the only channel left to explain carrier localization in this commensurate
1D conductor. Under ambient pressure, given the total bandwidth deduced
from quantum chemistry (W = Wtot(P = 1bar) = 0.350 eV (3850 K)) and
the experimental Mott gap (2∆ρ,a = 2700 K), the theory [23] gives, in the
case of quarter filling stricto sensu: 2∆ρ,a = 2W (U/W )3/2(1−4Kρ). This leads
to the bare value Kρ = 0.1, with a reasonable U/W = 0.7.

The Mott gap of (EDT− TTF− CONMe2)2AsF6 is much larger than the
expected value of the bare interstack overlap t⊥, which makes according to
Eq. 1.17 the single particle hopping between neighboring stacks non-pertinent
in the pressure regime less than 20 kbar since the transverse hopping is renor-
malized to zero on account of a strong intrachain electron-hole interaction.

The interaction over bandwidth ratio U/W ≈ 0.7 is also in fair agreement
with the result of a crude analysis of the spin susceptibility of S-salts [42,89]
and indicates that these compounds lie in the strong coupling sector. With
increasing pressure, the gap decreases steadily up to the pressure of 20 kbar
above which it disappears sharply due to the competing transverse coupling.
Below 15 kbar, the gap of (EDT− TTF− CONMe2)2AsF6 (1350 K) is about
equal to the gap of (TMTTF)2X measured under ambient pressure [47]. Since
the logarithmic pressure dependences of the gap seem to be similar for both
compounds, we may say that (EDT− TTF− CONMe2)2AsF6 can also be
considered as part of the generic Fabre-Bechgaard salt diagram, provided
the origin of the pressure axis is shifted to the left by 15 kbar. Hence, it is
reasonable to expect that the TL parameter Kρ increases from left to right in
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the (TM)2X diagram, since both optical and transport data suggest Kρ= 0.23
in the Se compounds whilst it is only of the order of 0.1 in sulfur compounds.
Let us add that the uniformly stacked 1-D conductor (DI−DCNQI)2Ag, an

Fig. 1.18. Structure of the quarter-filled compound
(EDT− TTF− CONMe2)2AsF6. After Ref. [98]

other quarter-filled compound reveals localization properties quite similar to
those observed in the (TM)2X series [99]. The normal state of this system is
insulating at low pressure probably due to strong electron correlations but
at pressures exceeding 15 kbar, the longitudinal restivity is metallic above
100K with a quasi linear temperature dependence leading to Kρ= 0.25 in
the quarter-filled band hypothesis. This result shows once more that the
conductor lies at the border with the quarter-filled Mott localized insulator.

1.4.4 A robust 1-D compound:(TTDM-TTF)2Au(mnt)2

For the sake of completeness we shall mention the behavior of an interesting
organic salt, which unlike all (TM)2X compounds, has failed to reveal the
usual suppression of the insulating phase under pressure [100]. The (TTDM-
TTF)2Au(mnt)2 system, in spite of a strong structural analogy with the
(TM)2X materials exhibiting stacks of donors arranged in layers with short
interchain contacts, shows a unique extreme 1-D character together with a
strong bond dimerization. According to extended Huckel calculations, the
dimerization gap at the middle of the HOMO band amounts to 0.027 eV
i.e 13% of the upper band dispersion and the interchain coupling within the
layers is practically zero. As the smallness of this contact is due to terminal
sulfur atoms in intermolecular contacts not participating to the HOMO of the
molecule, we can expect a survival of the 1-D character under pressure and
no pressure-induced dimensionality crossover. Consequently, contrasting with
the members of the Fabre-Bechgaard series, the Mott-Hubbard insulating
nature persists up to a pressure of 25 kbar [100], which is usually large enough
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to severely decrease (if not suppress) the localization in the latter family as
shown in the present article.

1.4.5 The spin-density-wave phase

At the core of the unity shown by the phase diagram of Fig. 1.3 is the shift
on the pressure scale when selenium is substituted for the sulfur atom and
yields the Bechgaard salts series (TMTSF)2X [87, 101]. The selenium series
was at the start considered more promising compared to previous organic
compounds, mainly because the metal insulator transition at ambient pres-
sure only occurs below 20K after high metallic conductivity have been at-
tained [87].

In the two compounds of the series (TMTSF)2PF6 and (TMTSF)2AsF6,
the transition occurs at Tc ≈ 12K at 1 bar [87, 101, 102]. The transition
early showed all the characteristics of SDW long-range ordering [103, 104].
Similar SDW is also found in (TMTTF)2X but at much higher values on the
pressure scale. In (TMTTF)2PF6 for example, about 40 kbar of pressure is
needed to reach a Tc ∼ 10K (Fig. 1.2) [12, 105], whereas for (TMTTF)2Br
[82,106] and (TMTTF)2BF4 [107] about 10 kbar and 27 kbar must be applied,
respectively.

The gradual emergence of a plasma edge in the b direction below 100K
[108, 109], and the recovery of transverse metallic and longitudinal Fermi
liquid (∼ T 2) resistivity below T ? for (TMTSF)2PF6 indicate that the trans-
verse electron band motion has developed some coherence at the onset of the
SDW transition. The mechanism of the instability will then naturally fol-
low from the property of nesting of the Fermi surface based on the property
E∗−p(k) = −E∗p(k + q0) of the spectrum (1.16) for a special wave vector q0,
called the nesting vector. The relevance of the Fermi surface for the transition
has been confirmed by the determination of the modulation wave vector of
SDW by NMR [110], which coincides with the best nesting vector obtained by
band calculations [8]. In the simplified model spectrum Eq. (1.16) for an ap-
proximate orthorhombic lattice, perfect nesting is found at q0 = (2kF , π, π).
Deviations with respect to this ideal situation, however, are likely to be found
in practice. This amounts to use the spectra

E∗p(k) = v(pk − kF )− 2t∗⊥b cos k⊥b − 2t∗⊥c cos k⊥c − 2t′⊥b cos 2k⊥b, (1.39)

that contains small next-to-nearest-neighbor hopping t′⊥b along the b direction
(t′⊥b � t⊥b). This leads to the modified nesting condition

E∗p(k) = −E∗−p(k + q0) + 4t′⊥b cos 2k⊥b, (1.40)

with k⊥b dependent nesting frustration.
The determination of the temperature scale for the SDW instability fol-

lows the analysis given in § 1.2.2, where the ladder result Eq. (1.24) becomes
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is the bare susceptibility in the presence of nesting frustration t′⊥b (ψ(x) is
the Digamma function and 〈. . .〉k⊥b is an average over k⊥b) [111]. As men-
tioned previously, the above expressions differ slightly from previous mean-
field approaches [34, 35, 111, 112], in that the contribution of intermediate
electron-hole excitations to χ0 has been here restricted to an energy shell
±Tx1 (instead of ±EF ) around the Fermi level. More energetic excitations
extending up to the Fermi energy are one-dimensional in character and are
governed by Eqs. (1.2) [17, 28, 30, 113]. The above Stoner form also neglects
the finite coupling between electron-hole and electron-electron pairings, an
interference that persists even below Tx1 . This approximate weak coupling de-
scription of SDW remains qualitatively correct, however, as long as t′⊥b does
not reach too large values, that is where the interference between density-
wave and superconductivity can change the nature of the ground state (see
§ 1.4.6).

The Stoner form (1.41) develops a singularity at the critical temperature
Tc that depends on t′⊥b, the main parameter that is standardly used to mimic
the actual effect of pressure on the SDW state [34, 35, 111, 114]. A finite t′⊥b
will then reduce Tc with respect to the BCS limiting value T 0

c = Tx1 e−2/J̃∗

at perfect nesting (Eq. (1.25)), a feature of the model that was soon linked
with experiments done under pressure [101,102,115,116] (inset of Fig. 1.24).
Besides the monotonic increase of Tx1 and the decrease of J̃∗ under pressure,
the detrimental influence of t′⊥b on Tc remains the most dominant effect.

The expression (1.41) predicts that at the approach of the critical value
t′cr⊥b ∼ 0.7T 0

c , Tc rapidly goes down to zero – though the possibility of SDW at
incommensurate q0 and very low temperature may introduce a change in the
slope of Tc near Pc [117]. To t′cr⊥b will then correspond a critical pressure Pc for
the suppression of SDW; this variation of Tc agrees with the characteristic
pressure profile generally observed for (TMTSF)2X at moderate pressure
(Fig. 1.24) and for (TMTTF)2X at higher pressure (Figs. 1.2 and 1.3). The
fitness of the model to describe the Tc of the SDW state in (TMTSF)2X can
be further assessed if one considers the influence of a transverse magnetic
field on Tc. A perpendicular magnetic field H‖c∗ tends to confine the motion
of electrons along the chain direction and gradually restores better nesting
conditions. This in turn increases Tc with H [111], consistently with early
field dependent measurements of Tc in (TMTSF)2PF6 [118].
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Intrusion of charge-density-wave order

The reexamination of diffuse scattering X-ray patterns of (TMTSF)2PF6 by
Pouget and Ravy [81,119] revealed the emergence, besides SDW, of a charge-
density-wave superstructure (CDW) at Tc; both having the same modulation
vector q0. These results were subsequently confirmed by Kagoshima et al.
[120], who also found a similar superstructure in (TMTSF)2AsF6, but with
a weaker amplitude. These results came as a surprise since at variance with
ordinary Peierls phenomena, the CDW order is not preceded by any lattice
softening in the normal state (the 2kF diffuse scattering lines do exist at high
temperature but their amplitudes become vanishingly small in the vicinity
of Tc in the normal state [54,119]). The CDW superstructure would then be
entirely electronic in character with no lattice displacement involved.

In connection with these X-ray results, it is worth mentioning the earlier
optical conductivity measurements of Ng et al. [121], on the isostructural
member of the series (TMTSF)2SbF6. The results show the growth in the
infrared of new phonon lines at Tc, precisely those usually expected for the
excitations of a CDW superstructure; their temperature dependent intensity
follows roughly the one of the SDW order parameter below Tc. CDW phonon
lines in the far infrared conductivity have also been found in the metallic
phase of (TMTSF)2ClO4 at low temperature [122], indicating that 2kF -CDW
and SDW correlations apparently coexist in the normal phase [27,42].

On theoretical grounds the possibility for SDW and CDW to coexist has
been analyzed recently by considering the redistribution of charge and spin
in the unit cell, a possibility that emerges when its internal – two-molecules
– structure and the long-range Coulomb interaction are taken into account.
In the framework of extended Hubbard model, numerical and mean-field ap-
proaches show that charge and spin can be so rearranged in the unit cell that
SDW, BOW and CDW can coexist [59,79,123,124]. Moreover, it was shown
recently that when interchain Coulomb interaction is included, this can favor
– even for small amplitude – BOW and CDW correlations while not affecting
SDW [125].

1.4.6 Some features of the superconducting state

The superconducting transition

For all cases of superconductivity in the (TM)2X series, the first evidence
has been provided by a drop of the resistivity below the critical tempera-
ture and the suppression of this drop under magnetic field. We shall focus
the presentation on the two members of the (TMTSF)2X series, which have
attracted most attention:

– i) (TMTSF)2PF6 , because this has been the first organic superconductor
to be found by transport measurements [101], and subsequently confirmed
by magnetic shielding [126,127], and also because the electronic properties



1 Interacting electrons in quasi-one-dimensional organic superconductors 35

of the 1-D electron gas on the organic stacks are only weakly (if at all)
affected by the centrosymmetrical anions PF6. The finding of a very small
and still non-saturating resistivity under ambient pressure reaching the
value of 10−5Ω−1 cm−1 at 12K triggered further pressure studies at a
pressure of 9 kbar in a dilution refrigerator, which led to the discovery
of a zero resistance state below 1K (see Fig. 1.19). The non saturation of
the resistivity had been taken as a signature of superconducting precursor
effects. We shall come again to this important question later.

Fig. 1.19. (TMTSF)2PF6, first observation of organic superconductivity under
pressure. After Ref. [101]

– ii) (TMTSF)2ClO4, because it is the only member of the (TM)2X series
displaying superconductivity at ambient pressure. However, the study of
the superconducting state in (TMTSF)2ClO4 is meeting the problem of
the ClO4 anions ordering at 24K, doubling the periodicity along the b-
axis [60]. Consequently, great care must be taken to cool the sample slowly
enough in order to reach a well anion-ordered state (R-state) at low tem-
perature; otherwise superconductivity is faced to its great sensitivity to
disorder, a very important feature for organic superconductors that will
be discussed more extensively below.

Since (TMTSF)2ClO4 is an ambient pressure superconductor the ther-
modynamic evidence of the phase transition has been obtained from specific
heat on single crystals [128]. The electronic contribution to the specific heat
of (TMTSF)2ClO4 in a Ce/T vs T plot (Fig. 1.21), dipslays a very large
anomaly around 1.2K [128]. Above 1.22K, the total specific heat obeys the
classical relation in metals C/T = γ+βT 2, where the Sommerfeld constant for
electrons γ = 10.5 mJ mol−1K−2, corresponding to a density of states at the
Fermi level N(EF ) = 2.1 states eV−1 mol−1 for the two spin directions [128].
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Fig. 1.20. (TMTSF)2ClO4, first observation of organic superconductivity at am-
bient pressure. After Ref. [94]

The specific heat jump at the transition amounts then to ∆Ce/γTc = 1.67,
i.e. only slightly larger than the BCS ratio for a s-wave superconductor. The
behavior of Ce(T ) in the superconducting state leads to the determination of
the thermodynamical critical field Hc = 44±2 Oe and the quasi-particle gap
2∆ = 4K. Tc is depressed at a rate of 1.1 mK/Oe−1, when a magnetic field is
applied along the c∗ axis [129]. Comparing the value of the density of states
derived from the specific heat and the value of the Pauli susceptibility [43],
lends support to a weak coupling Fermi liquid picture (at least in the low
temperature range) [89].

Another confirmation of organic superconductivity has been provided by
the measurement of thermal conduction in (TMTSF)2ClO4 [130]. From the
difference between thermal conductivity in magnetic field (larger than the
critical field) and in zero applied field, the authors of Ref. [130] have been
able to extract the electronic contribution of the thermal conductivity below
Tc down to about Tc/5, Fig. (1.22). These data lead to a ratio ∆(0)/kBTc = 2
within the Bardeen Rickaysen and Teword (BRT) theory of the thermal con-
duction in the superconducting state [131]. Such a ratio is in fair agreement
with the specific heat jump data mentioned above. The saturation of the
electronic thermal conduction observed at low temperature on Fig.(1.22) is
in favor of a well defined gap in the quasi-particle spectrum (possibly due
to the interplay with the anion gap of this particular compound) but does
not necessarily implies s-pairing for the orbital symmetry of the supercon-
ducting wave function (see the discussion in §1.4.6). The results of thermal
conductivity contrast with those NMR spin-lattice relaxation rate measure-
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Fig. 1.21. Electronic contribution to the specific heat of (TMTSF)2ClO4, plotted
as Ce/T versus T . After [128]

ments obtained earlier by Takigawa et al., on (TMTSF)2ClO4 [132], which
show the absence of an Hebel Slichter peak at Tc and a power law depen-
dence T−1

1 ∝ T 3 for protons NMR (1H)– these two features being compatible
with the existence of nodes for the superconducting gap [133]. A similar al-
gebraic dependence on temperature for T−1

1 has been found for 77Se nuclei
in (TMTSF)2PF6 above the critical pressure Pc [134].

Fig. 1.22. (TMTSF)2ClO4, normalized electronic thermal conductivity compared
to the BRT theory and the data in the unconventional heavy fermion superconduc-
tor. After Ref. [130]



38 C. Bourbonnais and D. Jérome

The onset of superconducting order has also been detected by a shift
of the muon precession frequency entering the superconducting state below
Tc under a field of 180 G [135]. However, the supeconducting state is not
accompanied by any enhancement of the muon relaxation rate according to
the data of reference [135], and the recent zero field data of [136]. Such a
behavior is at variance with the behaviour of Sr2Ru04 [137], in which the
increase of the relaxation rate in a zero applied field suggests the development
of spontaneous magnetic fields and is taken as a possible (but not unique)
evidence for time-reversal symmetry breaking and triplet superconductivity
in this oxide material.

Critical fields

The anisotropic character of the electronic structure already known from the
anisotropy of the optical data in the normal phase, is reflected in a severe
anisotropy of the critical fields Hc2 measured along the three principal direc-
tions in (TMTSF)2ClO4 [138–141]. Early data in (TMTSF)2ClO4 [141] are
not in contradiction with the picture of singlet pairing but no data were given
below 0.5K, the temperature domain where it would be most rewarding to
see how Hc2 compares with the Pauli limit, when H is perfectly aligned along
the a and b′ axes. This study has been revisited quite recently in perfectly
aligned magnetic fields down to 0.2K [142].

The linearity of the critical fields with temperature in the vicinity of the
Tc suggests an orbital limitation in the Ginzburg-Landau formalism for the
critical field and rules out a Pauli limitation, which would favour a (1 −
T/Tc)1/2 dependence [139,143].

Furthermore, in support to an early suggestion [143], the band structure
parameters of (TMTSF)2ClO4 can explain the values and the anisotropies
of the critical fields assuming the existence of nodes of the superconducting
order parameter [142]. These results imply that critical fields values calculated
without any contribution from the spin-orbit coupling can overcome the Pauli
limit at low temperature by factors of two or more [144, 145]. The situation
for (TMTSF)2PF6 may, however, be quite different as the possibility of a non
homogenous superconducting phase in the vicinity of the critical pressure
opens an other possibility for an enhancement of the superconducting critical
fields, vide infra.

Superconductivity and Pressure

The pressure dependence of Tc is admittedly a remarkable feature for the
(TMTSF)2X compounds since it is the pressure parameter that enabled or-
ganic superconductivity to be discovered. However, pressure suppresses also
the superconducting phase very quickly. As far as (TMTSF)2PF6 is con-
cerned, in the vicinity of the critical pressure the pressure coefficient amounts
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Fig. 1.23. (TMTTF)2PF6, critical fields along c? under pressure in the SDW/SC
coexistence regime. The lines are guides to the eyes. After Ref. [146]

to δ lnTc/δP = 11% kbar−1 leading in turn to a Gruneisen constant for super-
conductivity δ lnTc/δ lnV = 18 at 9 kbar [147], with the compressibility data
measured under pressure (at 16 kbar δ lnV/δP = 0.7% kbar−1 ) [39] in the
same compound. This value is indeed sizably larger than 7, the value which
is obtained in tin, the elemental superconductor exhibiting the strongest sen-
sitivity to pressure [148]. A look at the (TMTSF)2PF6 phase diagram shows
that the strong pressure dependence of Tc is however restricted to the close
vicinity of the border with the SDW phase.

The pressure coefficient of superconductivity in (TMTSF)2ClO4 is even
more dramatic since then δ lnTc/δ lnV = 36 [149] using the compressibil-
ity of 1% kbar−1 (this is the value measured for (TMTSF)2PF6 at ambient
pressure [39], since to the best of our knowledge compressibility data for
(TMTSF)2ClO4 are still missing). However, this remarkable sensitivity of
Tc in (TMTSF)2ClO4 might actually be related to the very specific prob-
lem of anion ordering in this compound as it has been suggested from the
recent study on the sensitivity of Tc against the presence of non-magnetic
disorder [97]. Anion ordering reveals an uprise of the ordering temperature
under pressure [149–151], which can be derived from the pressure depen-
dence of a small kink in the temperature dependence of the resistivity, the
signature of the ordering, moving from 24 up to 26.5K under 1.5 kbar and
corroborated by studies at even higher pressures [152]. Together with this
uprise, there exists a slowing down in the dynamics of the anions needed for
the ordering. Hence, high pressure studies require a special attention to the
cooling rate which must be kept low enough to allow anion ordering at low
temperature. This may be the explanation for the discrepancy between high
pressure data showing the signature of anion ordering up to 8 kbar [151], and
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the absence of ordering claimed from the interpretation of magneto-angular
oscillations [153].

SDW-SC coexistence

A situation of non-homogenous superconductivity have been clearly identi-
fied near the border between SDW and Superconductivity in the (TMTSF)2X
phase diagram [116]. At high pressure (P > 9.4 kbar ), the superconduct-
ing phase emerges from a metallic state and can be reasonably thought
of as homogeneous with a critical current density along the a-axis Jc =
200 A cm−2. Below this critical pressure, there exists a pressure domain
for (TMTSF)2PF6 (≈ 1 kbar wide) in which a superconducting signature
is observed at a nearly pressure independent temperature below the onset
of a SDW instability, where the critical current density is greatly reduced,
Jc ≈ 10 A cm−2. This feature points in favor of a coexistence of SDW and
SC macroscopic domains consisting of metallic (SC) tubes parallel to the
a axis (Fig. 1.24). The existence of coexisting macroscopic regions of SDW

Fig. 1.24. Coexistence between SDW and Superconductivity in (TMTTF)2PF6in
the vicinity of the criticial pressure for suppression of the SDW ground state. After
Ref. [116]

and SC order is also supported by a recent NMR investigation performed at
a pressure slightly lower than the critical pressure for the establishment of
the homogenous state [154]. This latter study has enabled a quantification of
the relative volume fractions in the SDW-metallic regime using the proton
NMR linewidth as the local probe. A related consequence of the existence
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of macroscopic insulating domains in the superconducting phase allowing a
channeling of the lines of force in the material is the large increase of the
upper critical field Hc2 [134], which had already been reported long time ago
in (TMTSF)2PF6 with the second confirmation of organic superconductiv-
ity [155], and also later in (TMTSF)2AsF6 [102].

Fig. 1.25. Sketch of the theory showing from the free energy vs the parameter
t′b, the region of coexistence between SDW and Superconductivity in the vicinity
of the criticial pressure [116]. t′b(≡ t′⊥b in the text) parametrizes the deviation from
the perfect nesting of the Q-1-D Fermi surface. After Ref. [116]

It must be kept in mind that the slab formation in the vicinity of the
SDW state with the formation of insulating domains is not related to the
penetration of the magnetic field in a type II superconductor but the result
from a competition between insulating and conducting phases. The claim for
the existence of tubular domains ‖a is based on an analysis of the resistance
in the vicinity of the critical pressure at low temperature above Tc, and of
the critical currents in the superconducting state [116]. The theoretical ap-
proach relies on a variational model leading to an inhomogenous phase with
an energy lower than the energy of the homogenous states (Metallic or Insu-
lating SDW). Since it is the transverse b parameter that is expected to govern
the respective stability of the SDW and metallic phases at a pressure lower
than the critical one but close enough to the homogenous critical line the
formation of macroscopic metallic domains with a smaller b is energetically
favored in-between b expanded SDW domains [156]. Similarly, at pressures
larger than the critical pressure, insulating SDW domains should be present
between metallic regions (see Fig. 1.25). This interpretation is at variance
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with a model based on similar experimental data for the critical fields in the
coexistence regime in which the formation of thin superconducting slabs per-
pendicular to a sandwiched between SDW insulating domains is the result of
a self organization process taking advantage of the largest field penetration
length perpendicular to the direction of the field [134].

An other approach has been taken by Gorkov and Grigoriev for the inter-
pretation of the SDW/SC coexistence regime in (TMTSF)2PF6 [157]. This
model predicts the existence of soliton domain walls in the SDW phase close
to the critical pressure between the uniformly gapped SDW phase and the
SC phase. As these domain walls should be perpendicular to the molecular
stacking axis, a strong anomaly of the transport anisotropy could be antic-
ipated related to the formation of conducting slabs perpendicular to the a
axis in the coexistence pressure regime. However, no such anomaly has been
detected experimentally [158].

Recent data obtained with (TMTSF)2PF6 under very high pressure,
where the coexistence regime is much broader than for (TMTSF)2PF6 , have
clearly shown that the critical field for H‖c∗ is enhanced by a factor 10 at
the border with the SDW phase. In this pressure domain, it can reach 1T,
(Fig. 1.23), while it amounts to about 0.1 T at very high pressure when the
superconducting state is homogenous [146], a value similar to the observation
in the R-state of (TMTSF)2ClO4.

Finally, an experimental study performed in (TMTSF)2ReO4 under pres-
sure has revealed the existence of conducting filaments parallel to a in the
pressure domain close to 10 kbar when metallic and insulating domains co-
exist at low temperature as a consequence of two coexisting anion orders in
this material [159].

Superconductivity and non magnetic defects

It is the remarkable sensitivity of organic superconductivity to irradiation
[160, 161] that led Abrikosov to suggest the possibility of triplet pairing in
these materials [162]. Although irradiation was recognized to be an excellent
method for the introduction of defects in a controlled way [163], defects thus
created can be magnetic [164], and the suppression of superconductivity by
irradiation induced defects as a signature of non-conventional pairing must
be taken with ‘a grain of salt’ since local magnetic moments can also act
as strong pair-breakers on s-wave superconductors. Several routes have been
followed to introduce an intrinsically non-magnetic perturbation modulating
the potential seen by the carriers on the organic stacks. Non magnetic disorder
has been achieved substituting TMTTF for TMTSF on the cationic stacks of
(TM)2X salts with PF6 [7] and ClO4 salts [165]. However, in both situations
cationic alloying induces drastic modifications of the normal state electronic
properties since the SDW transition of (TMTSF)2PF6 is quickly broadened
and pushed towards higher temperature upon alloying [166].
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Leaving the cation stack uniform, scattering centers can also be created
on the anion stacks with the solid solution (TMTSF)2ClO4(1−x)ReO4x, where
Tomić et al., first mentioned the suppression of superconductivity upon al-
loying with a very small concentration of ReO4 anions [167,168]. In the case
of a solid solution with tetrahedral anions such as ClO4 or ReO4, one is
confronted to two potential sources of non-magnetic disorder that act ad-
ditively on the elastic electronic lifetime according to the Mathiessen’s law.
First the modulation due to the different chemical natures of the anions and
second a disorder due to a progressive loss of long-range ordering at TAO in
the (TM)2X solid solution, although X-ray investigations have revealed that
long-range order is preserved up to 3% ReO4 with a correlation length ξa >
200Å [169]. Studies of superconductivity in (TMTSF)2ClO4 performed un-
der extremely slow cooling conditions have shown that Tc is a fast decreasing
function of the non-magnetic disorder [97], where the residual resistivity along
the c∗ axis has been used for the measure of the disorder in the alloys with
different concentrations (Fig. 1.26). It must be emphasized that the residual
resistivity is derived from a fit of the temperature dependence of the normal
state resistivity according to a Fermi liquid model below the anion ordering
temperature of 24K, namely ρ(T ) = ρ−0 + AT 2. This treatment of the resis-
tivity below 10K or so, allows us to remove the influence of superconducting
precursor effects above the ordering temperature.

The suppression of Tc is clearly related to the enhancement of the scat-
tering rate in the solid solution. Since the additional scattering cannot be
ascribed to magnetic scattering according to the EPR checks showing no ad-
ditional traces of localized spins in the solid solution, the data in figure (1.26)
cannot be reconciled with the picture of a superconducting gap keeping a
constant sign over the whole (±kF ) Fermi surface. They require a picture
of pair breaking in a superconductor with an unconventional gap symme-
try. The conventional pair breaking theory for magnetic impurities in usual
superconductors has been generalized to the case of non-magnetic impuri-
ties in unconventional materials and the correction to Tc obeys the following
relation [171,172],

ln
(T 0

c

Tc

)
= ψ

(1
2

+
αT 0

c

2πTc

)
− ψ

(1
2

)
, (1.43)

with ψ(x) being the Digamma function, α = h̄/2τkBT 0
c the depairing pa-

rameter, τ the elastic scattering time and T 0
c the limit of Tc in the ab-

sence of any scattering. From the data in figure (1.26), the best fit leads to
T 0
c =1.57K and a critical scattering for the suppression of superconductivity

of 1/τcr = 1.85 cm−1. Accordingly, 1/τ amounts to 0.56 cm−1 in the pris-
tine (TMTSF)2ClO4 sample. Such a value for the inverse carrier life time
is admittedly significantly smaller than the predicted width at half height
namely, 1/τ ≈ 2 cm−1 assuming a classical Drude behaviour involving the
temperature dependence of the DC conductivity and the longitudinal plasma
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Fig. 1.26. Phase diagram of (TM)2X governed by non magnetic disorder. All
open circles refer to the very slowly cooled samples in the R-state with different
ReO−4 contents. Open squares are data from the same samples corresponding to
slightly larger cooling rates although keeping a metallic behavior above Tc. A 10%
sample with ρ−0 ≈ 0.32Ω.cm has provided four different Tc depending on the cooling
rate. One sample (8%) did not reveal any ordering down to 0.1K. These data show
that the residual resistivity is a better characterization for the disorder than the
nominal ReO−4 concentration. Full dots (15 and 17%) are relaxed samples exhibiting
a SDW ground state. The vertical bar is the error bar for a sample in which a
maximum of the logarithmic derivative could not be clearly identified and therefore
the actual SDW temperature should lie below 4K, the temperature of minimum
resistivity. The full square is the Q-state of a 6% sample. The continuous line at
the Metal-SC transition is the best fit of the data with the diGamma function
model providing T 0

c = 1.57K. The dashed line at the Metal-SDW transition is only
a guide for the eye. After Ref. [170]

frequency [49]. The present derivation of the electron life time compares fairly
well with far infrared optical measurements leading to a zero frequency con-
ductivity peak with a width less than 2-4 cm−1 [92, 95]. Our results support
the existence of a very narrow zero frequency peak carrying a minor fraction
of the total spectral weight, which is probably the signature of a correlated
low dimensional Fermionic gas.

The sensitivity of Tc to non-magnetic disorder cannot be reconciled with
a model of conventional superconductors. The gap must show regions of pos-
itive and negative signs on the Fermi surface, which can be averaged out
by a finite electron lifetime due to elastic scattering. As these defects are
local, the scattering momentum of order 2kF can mix +kF and −kF states
and therefore the sensitivity to non-magnetic scattering is still unable to tell
the difference between px and d orbital symmetries for the superconducting
wave function. A noticeable progress could be achieved paying attention to
the spin part of the wave function. In the close vicinity of Tc, orbital limi-
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tation for the critical field is expected to prevail and therefore the analysis
of the critical fields close to Tc does not imply a triplet pairing [143]. When
the magnetic field is oriented along the intermediate b-axis violations of the
Pauli limitation have been claimed in (TMTSF)2PF6 [144] and recently in
(TMTSF)2ClO4 superconductors [145]. However, it must be kept in mind
that in all these experiments under transverse magnetic field along the b′ axis,
the electronic structure is profoundly affected by the application of the field
which tends to localize the electrons as shown by the normal state crossing
over from a metallic to an insulating state when investigated with a current
along c∗ [142]. Furthermore it is still unclear whether the superconducting
phase remains uniform under very strong transverse field [173,174].

The nature of the superconducting coupling in (TM)2X conductors is still
intensively studied and debated. The absence of temperature dependence of
the 13C Knight shift through the critical temperature at a pressure where
(TMTSF)2PF6 is superconducting implies a triplet pairing [134]. However,
the question of sample thermalization during the time of the NMR experi-
ment has been questioned [175] and this result will have to be reconfirmed.
The nature of the coupling in (TM)2X superconductors has not yet reached a
consensus. This is due in part to the lack of unambiguous experimental data
for samples exhibiting superconductivity in the very low temperature region.
This is at variance with the singlet coupling found in 2D organic supercon-
ductors with a Tc in the 10K range as clearly indicated by the Knight shifts
measurements in the superconducting state [176,177]. It can be noticed that
in spite of the established singlet coupling, the critical fields Hc2 of 2D su-
perconductors can also greatly exceed the paramagnetic limit in the parallel
geometry [178–180].

An approach to the mechanism of superconductivity

Given the experimental uncertainty about the nature of superconductivity
in the Bechgaard and Fabre salts, it is therefore still premature to privilege
the triplet scenario for pairing over the singlet one. In any case, however,
superconductivity certainly differs from what is commonly seen in ordinary
metals and this raises the question of the possible causes of unconventional
pairing in these materials [181]. This problem perplexed almost every one
in the field from the start, since the requirements for a traditional phonon-
mediated mechanism for pairing are apparently not met [182]. Antiferromag-
netism that completely surrounds superconductivity in the phase diagram
represents the main obstacle for an effective attraction mediated by phonons
to take place. Superconductivity is indeed invariably replaced by an SDW
instability whether one moves backward on the pressure scale or whether
at fixed pressure P > Pc, one moves along the magnetic field axis H(‖c∗),
where a cascade of field-induced SDW states is found [183]. (TMTSF)2ClO4

is another example that illustrates how close (TM)2X are to the threshold
of a SDW instability at P > Pc. This compound presents an anion ordering
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Fig. 1.27. Temperature dependence of the nuclear spin relaxation rate T−1
1 of

(TMTSF)2PF6 at P=1bar (triangles), 5.5kbar (squares), 8kbar (crosses) and 10
kbar (full circles). Deviations with respect to a linear temperature behavior result
from antiferromagnetic fluctuations. After Ref. [52]

on slow cooling and is already a superconductor at ambient pressure (Pc < 1
bar, Fig. 1.20); it develops an SDW instability either beyond a critical alloy-
ing [167,170] (Fig. 1.26), or by just cranking up the cooling rate [167,184,185].
Additional experimental weight supporting underlying coupling conditions
for SDW comes from the properties of the normal state at P > Pc. NMR
experiments show indeed a strong enhancement of the spin-lattice relaxation
rate T−1

1 as a function of temperature, revealing the existence of strong an-
tiferromagnetic spin fluctuations in a very broad temperature domain of the
metallic state above the superconducting Tc (Fig. 1.27) [27,42,52,186]. There-
fore all this goes to show that even in the presence of superconductivity, the
interactions in (TM)2X at P > Pc remain repulsive and favorable to a SDW
state, only nesting conditions are apparently changing in each case.

According to the model described in §1.4.5, these fluctuations are made at
the microscopic level of electron-hole pairs at (k,k±q0). These will then co-
exist with electron-electron (and hole-hole) pairing at (k,−k), namely those
responsible for the superconducting instability of the normal state at P > Pc.
Since these two different pairings refer to the same electronic excitations
around the Fermi surface, there will be some intrinsic dynamics or interfer-
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ence between them. We already came up against the problem of interfering
pairing instabilities in the one-dimensional case (§ 1.2). For repulsive inter-
actions and perfect nesting at 2kF , we have seen that interference between
electron-hole and electron-electron pairing is maximum for a 1D – two points
– Fermi surface and enters as a key ingredient in the formation of either a
Luttinger liquid or a Mott insulating phase at commensurate filling [13–15].
At finite t⊥b and for temperature well below T ?, however, the outcome differs
and may provide a logical link between SDW and superconductivity.

The connection between superconductivity and density-wave correlations
in isotropic systems goes back to the work of Kohn and Luttinger in the mid
sixties [187]. They showed that the coupling between electron-hole (density-
wave) and electron-electron correlations, albeit very small, is still present for
a spherical Fermi surface. In this isotropic limit, 2kF Friedel (charge) fluc-
tuations act as a oscillating pairing potential for electrons giving rise to a
purely electronic mechanism for superconductivity at large angular momen-
tum. Emery suggested that this non-phonon mechanism should be working
in the spin sector as well, being boosted by the proximity of a SDW state in
the quasi-1D geometry in order to yield experimentally reachable Tc [188] –
an effect that was early on confirmed in the framework of renormalized mean-
field theory [31, 189, 190] and various RPA approaches [191–193]. However,
these approaches amount to extract an effective superconducting coupling
from short-range density-wave correlations, which in turn serves as the input
of a ladder diagrammatic summation. It turns out that the ladder theory, as
a single channel approximation, neglects the quantum interference between
the different kinds of pairings, and as such it cannot capture the dynamical
emergence of superconductivity.

Because of the finite value of t⊥b, interference becomes non uniform along
the Fermi surface. This introduces a momentum dependence in the scattering
amplitudes, which can be parametrized by the set of transverse wave vectors
for in going (k⊥1k⊥2) and outgoing (k′⊥1k

′
⊥2) electrons (here k⊥ ≡ k⊥b). The

generalization of the 1D scaling equations Eqs. (1.2) to now k⊥-dependent
interactions gi=1,2,3(k′⊥1k

′
⊥2k⊥2k⊥1) in the quasi-1D case, where both t⊥b and

t′⊥b are present, has been worked out recently [114,125,194,195]. The results
can be put in the following schematic form:

∂`gi(k′⊥1k
′
⊥2k⊥2k⊥1) =

∑
k⊥

3∑
n,n′=1

{
εnn

′

C,i gn({k⊥}) gn′({k⊥})L′C(k⊥, qC⊥)

+ εnn
′

P,i gn({k⊥}) gn′({k⊥})L′P (k⊥, qP⊥, t′⊥b)
}
, (1.44)

Here L′C,P = ∂`LC,P where LC,P are the Cooper (electron-electron) and
Peierls (electron-hole) loops, with qC,P⊥ as their respective {k⊥}-dependent
transverse momentum variables, and εnn

′

C,P,i = ±1, or 0. By integrating these
flow equations, the singularities shown by interactions signal instabilities of
the normal state at a critical temperature Tc. The nature of ordering is deter-
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Fig. 1.28. Calculated phase transition temperature of the quasi-one-dimensional
electron gas model as a function of the nesting deviation parameter t′⊥b for repulsive
intrachain interactions g1,2,3. Continuous line (g̃⊥1 = 0), dotted line (g̃⊥1 = 0.11) and
dashed line (g̃⊥1 = 0.14.). After Nickel et al., Ref. [125]

mined by the profile of interactions in {k⊥} space, which in turn corresponds
to a divergence of a given order parameter susceptibility χµ. Feeding these
equations with a realistic set of bare parameters for the repulsive intrachain
interactions gi and the band parameters t⊥b and EF in (TM)2X, it is possi-
ble to follow the instabilities of the normal state as a function of the nesting
deviations parameter t′⊥b, which simulates the main influence of pressure in
the model [114,125,194–196].

Thus at perfect nesting, when t′⊥b = 0, the normal state develops an SDW
instability at T 0

c ∼ 20K, which for small Umklapp scattering corresponds to
the range of Tc expected in most of (TMTSF)2X at ambient pressure and
(TMTTF)2X at relatively high pressure. The range of Tc roughly squares with
the one obtained in the single channel approximation with no interference be-
low Tx1 (§1.4.5). As t′⊥b increases, Tc is gradually decreasing until the critical
range t′cr⊥b ' 0.8T 0

c is reached where the SDW is suppressed (full circles, Fig.
1.28). The metallic phase remains unstable at finite temperature, however,
but the instability now takes place in the superconducting channel (open tri-
angles, Fig. 1.28). The order parameter is of the form ∆(k⊥) = ∆ cos k⊥ and
has nodes at k⊥ ± π/2; it corresponds to a interstack singlet or dx2−y2-wave
pairing. Therefore for repulsive intrachain interactions, an attraction between
electrons can be dynamically generated from the interference between Cooper
and Peierls scattering channels. The attraction between carriers on neighbor-
ing chains can be seen as being mediated by spin fluctuations. The fact that
SCd and SDW instability lines meet at the maximum of the superconduct-
ing Tc ∼ 1K and that the ratio T 0

c (SCd)/T 0
c (SDW) ∼ 1/20, together with

their respective t′⊥b dependence are worth noticing features in regard to the
experimental phase diagram (Fig. 1.3).
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Regarding the possible symmetries of the superconducting order param-
eter, an analysis of the momentum dependence of the scattering amplitude
gi({k⊥}) reveals that for the electron gas model defined with only intrachain
repulsive interactions, the strongest superconducting instability is invariably
found in the singlet SCd-wave channel [114,196]. Triplet superconductivity in
the px channel, which has been proposed on phenomenological grounds as a
possible candidate to describe superconductivity in the Bechgaard salts [197],
is strongly suppressed. In effect, the triplet SCpx superconductivity, which
has a gap order parameter ∆r = r∆ with r = sign kx, is an intrachain pairing
that is subjected to the strongest repulsive part of the oscillating potential
produced by SDW correlations [189]. More favorable conditions for triplet
pairing do exist but they take place at higher angular momentum, in the
interchain f-wave channel with a order parameter ∆r(k⊥) = r∆ cos k⊥, a
possibility that was shown to come out from the mean-field analysis [198].
However, for intrachain repulsive couplings alone the renormalization group
analysis show that the amplitude of triplet correlations are always subordi-
nate to those of the SCd-wave channel, which yields the highest supercon-
ducting Tc [125,196].

Following the Kohn-Luttinger picture, triplet pairing at high angular
momentum is actually connected to charge-density-wave fluctuations [187].
The presence of a CDW superstructure that coexists with a SDW state in
the Bechgaard salts (see § 1.4.5) has in this respect stressed their impor-
tance in these salts close to Pc. Following the example of most quasi-one-
dimensional systems in which a CDW superstructure is found [199, 200],
interchain Coulomb interaction is a physically relevant coupling that must
be taken into account in the presence of charge correlations. By includ-
ing, besides the gi, interchain backward (g⊥1 ), forward (g⊥2 ) and Umklapp
(g⊥3 ) scattering amplitudes, one defines the so-called extended electron gas
model [201, 202]. For realistic repulsive couplings, this model allows us to
expand the range of possibilities of both superconducting and density-wave
long-range orders. The RG solution of Eqs. (1.44) in the T − t′⊥b phase dia-
gram shows that g⊥1 plays a key role on the one hand, in the stability of SDW
and SCd orders, and on the other hand in the emergence of triplet supercon-
ductivity and CDW order [125, 194]. The RG results depicted in Fig. 1.29
indeed show that beyond a relatively small threshold in g⊥1 , SCd long-range
order is no longer stable and the instability of the normal state is rather
found in the interchain triplet f−wave channel above a critical t′⊥b. The SCf
Tc are comparable to SCd but show stronger ‘pressure’ coefficient along the
t′⊥b axis (Fig. 1.28). The results also show that the strength of SDW correla-
tions remain essentially unaffected and can still dominate the normal phase
in addition to CDW correlations, whose amplitude grows with the strength
interchain coupling. Although SDW order can precede the triplet SCf insta-
bility along the t′⊥b ‘pressure’ scale near the interchain coupling threshold, it
is very close in stability with a CDW superstructure (Figs. 1.28 and 1.29).
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Fig. 1.29. Calculated phase diagram of the extended quasi-one-dimensional elec-
tron gas model for repulsive couplings. After Nickel et al., Ref. [125]

Given the observation of a close proximity between SDW and CDW in
the phase diagram of the Bechgaard salts, it follows that not only singlet SCd
but also SCf are serious candidates for the description of superconductivity
in these materials. Since many parameters of the model are likely to change
under pressure besides t⊥b, this puts some haziness about how one actually
moves in the phase diagram of Fig. 1.29, and in turn on the most stable type
of superconductivity in these compounds.

1.5 Conclusion and outlook

In this brief account we went through the main physical properties of the
Bechgaard and Fabre salts series of organic superconductors. The global
phase diagram that was gradually built over the years around these two
series of compounds under either hydrostatic or chemical pressure stands out
as a model of unity for the physics of low dimensional correlated systems.
Much effort went to explain the multifaceted phase diagram of (TM)2X as
a whole, an attempt that also proved to be an active quest of unity for the
theory.

In this respect, while the theoretical description of the spin-Peierls and an-
tiferromagnetic instabilities in the phase diagram of (TM)2X does not meet
any serious conceptual difficulty, their strong competition at the putative
quantum critical point on the pressure scale is to our knowledge without
precedent in the field of low dimensional compounds. Although the quantum
criticality that is behind this competition would certainly gain to be further
clarified on experimental ground, its comprehension clearly challenges the tra-
ditional framework of critical phenomena and fosters some new conceptual
focus in unifying antiferromagnetism and a lattice distorted spin liquid phase.
In the last few years, the phenomenon of charge ordering has also played an
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important part in improving and even expanding the structure of the phase
diagram of (TM)2X. Though its observation has been so far restricted to
members of the Fabre salts series, this phenomenon raises important ques-
tions about the influence of charge disproportionation in the relative stability
of the spin-Peierls and Néel states in this series of compounds.

The interplay of different types of commensurability in weakly dimerized
quarter-filled compounds like the (TM)2X, is another issue that is at the
heart of a better understanding of strong electronic correlations that charac-
terize the properties normal phase in (TM)2X. This problem is linked to the
persistent issue of the dimensionality crossover or about how the restoration
of a Fermi liquid is achieved in quasi-one-dimensional conductors like the
(TM)2X.

As the starting point of the study of the Bechgaard salts more than
twenty-five years ago, superconductivity is certainly one of the hardest part
of the phase diagram to both explain and characterize. In spite of the recent
experimental advances, which again confirm the non conventional nature of
superconductivity in (TM)2X, the problem of the symmetry of the supercon-
ducting order parameter, as well as the issue of the presence and location of
nodes for the gap, are all enduring questions for which a consensus of views
has yet to be reached. Given the experimental constraints and difficulties
tied to the use of extremely low temperature and high pressure conditions
in (TM)2X, these questions will certainly continue to consume major exper-
imental efforts in the next few years.

The mechanism of organic superconductivity in quasi-one-dimensional
molecular crystals is a related key issue in want of a satisfactory explana-
tion. The extensive experimental evidence in favor of the systematic emer-
gence of superconductivity in (TM)2X just below their stability threshold
for antiferromagnetism has shown the need for a unified description of elec-
tronic excitations that at the core of both density-wave and superconducting
correlations. In this matter, the recent progress achieved by the renormaliza-
tion group method have resulted in definite predictions about the possible
symmetries of the superconducting order parameter when a purely electronic
mechanism is involved – predictions that often differ from phenomenologi-
cally based approaches to superconductivity. The results for the electron gas
model, albeit appealing when confronted to existing data, remain only indica-
tive, however, of what may be the actual origin of superconductivity in these
complex materials. In this respect, the future progress on the experimental
side will be certainly decisive for the theory.
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